Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for various values of DHaPs parameters, sizes, and different values of threads. In comparison to the unthreaded situation, the results demonstrate an improvement in the processing time which increases as the polynomial size increases, reaching its maximum of 5.8 in the case of polynomial size and order of 8000 × 8000 (matrix size). Furthermore, the trend of continuously raising the number of threads to enhance performance is inconsistent and becomes invalid at some point when the performance improvement falls below the maximum. The number of threads that achieve the highest improvement differs according to the size, being in the range of 8 to 16 threads in 1000 × 1000 matrix size, whereas at 8000 × 8000 case it ranges from 32 to 160 threads.
This research aims to identify how organizational compatibility, which represents the independent variable, affects higher performance, which is considered a dependent variable, given the importance of these variables in industrial organizations and their clear impact on their stability, survival, and growth in the light of changing environmental challenges. Where the practical research problem was represented by the weakness of awareness of the importance toward organizational compatibility and its dimensions (organizational loyalty, organizational similarity, affiliation or membership, compatibility with goals, and compatibility with values), which is meant by the individual's compatibility with the organization in which he/she w
... Show MoreThe Electrical power system has become vast and more complex, so it is subjected to sudden changes in load levels. Stability is an important concept which determines the stable operation of the power system. Transient stability analysis has become one of the significant studies in the power system to ensure the system stability to withstand a considerable disturbance. The effect of temporary occurrence can lead to malfunction of electronic control equipment. The application of flexible AC transmission systems (FACTS) devices in the transmission system have introduced several changes in the power system. These changes have a significant impact on the power system protection, due to differences inline impedance, line curre
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign