Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing characteristics effectively. This study proposes leveraging quantum-inspired computing to improve KNN classifiers for printer source identification, offering better accuracy even with noisy or variable printing conditions. The proposed approach uses the Gray Level Co-occurrence Matrix (GLCM) for feature extraction, which is resilient to changes in rotation and scale, making it well-suited for texture analysis. Experimental results show that the quantum-inspired KNN classifier captures subtle printing artifacts, leading to improved classification accuracy despite noise and variability.
Due to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence i
... Show MoreThe aim of the research is to find out the availability of the requirements of applying the indicators of school performance system in the public schools in Mahayel Asir educational directorate through the school planning indicator, the safety and security indicator, the active learning indicator, the student guidance indicator and determining the existence of statistically significant differences between the responses of the research community according to the variable of (scientific qualification - years of work as a principal - training courses). The questionnaire was used as a tool for data collection from the research community, which consists of all the public schools’ principals (n=180) Mahayel Asir educational directorate
... Show MoreThe traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreWe observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
The problem of the study was to identify the possibility of benefiting from the application of the target cost system as a modern cost system to activate the environmental cost management instead of the traditional systems used in the company due to the great transformations witnessed by the business environment in all fields, which have resulted in the search for modern systems to provide more accurate and more appropriate information to reduce Costs, because accurate information makes the company have a complete vision to achieve the company’s goals. To solve this problem, the research was based on the following hypothesis (that the role of the target cost system leads to the activation of environmental cost management). Target c
... Show More