Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing characteristics effectively. This study proposes leveraging quantum-inspired computing to improve KNN classifiers for printer source identification, offering better accuracy even with noisy or variable printing conditions. The proposed approach uses the Gray Level Co-occurrence Matrix (GLCM) for feature extraction, which is resilient to changes in rotation and scale, making it well-suited for texture analysis. Experimental results show that the quantum-inspired KNN classifier captures subtle printing artifacts, leading to improved classification accuracy despite noise and variability.
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
The aim of the research is to identify the effect of instructional design according to Kagan structure among the first intermediate school student’s, and how skills could help in generating information in mathematics. In accordance with the research objectives, the researcher has followed the experimental research method by adopting an experimental design with two equivalent groups of post-test to measure skills in generating information. Accordingly, the researcher raised two main null hypotheses: there were no statistically significant differences at the level of significance (0.05) between the average scores of the experimental group who studied the material according to Kagan structure and th
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreCold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t
Collapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreIn the last period there have been rapid developments and increased interest in the integration of the environment into urban planning. It has occupied a large part of the world’s most economically and economically important concerns, emphasizing the need to adopt the concepts of green urban construction as a basis for future cities. Both human and nature to continue and stay. Hence, the importance of research in building a base on the planning and design principles of the eco-friendly city for the purpose of local adoption”, thus facing the problem of” lack of application of knowledge on the basis of planning and design eco-friendly city. The hypothesis that “the development