It is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the other as a function of pH, we were able to quantify the relative stability of materials in two series of metal oxides and thereby quantify their relative thermodynamic stability, “by proxy”. We found that for the series of catalysts investigated the disorder made the materials stronger chemical oxidants and worse catalysts for the disproportionation of peroxide
Twelve samples of cigarettes have been collected from local markets of different types and origins by using (HPGe) detector, and measurement of the specific activity for series U238 and series Th232 in addition to K40 in order to estimate the health risk of cigarettes their by smokers, the results shown that highest specific activity value were be (12. 8±6. 3 Bq/kg, 8. 41±5. 8 Bq/kg, 125. 16±58. 3 Bq/kg), respectively, in the sample (MAC) MacBeth type cigarettes in Brazilian origin, this paper reports data such as (specific activity of K40, series U238, series Th232
Decolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 an
... Show MoreFurfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentratio
... Show MoreThe solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreIn the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char
... Show MoreThe usual methods of distance determination in Astronomy parallax and Spectroscopic with Expansion Methods are seldom applicable to Nebulae. In this work determination of the distances to individual Nebulae are calculated and discussed. The distances of Nebulae to the Earth are calculated. The accuracy of the distance is tested by using Aladin sky Atlas, and comparing Nebulae properties were derived from these distance made with statistical distance determination. The results showed that angular Expansions may occur in a part of the nebulae that is moving at a velocity different than the observed velocity. Also the results of the comparison of our spectroscopic distances with the trig