This study confirms the ubiquitin conjugating enzyme 2B (Rad6) plays a significant role in the DNA repair pathway also because the ubiquitin-conjugating pathway. The DNA repair pathway could be a variety of bypass repair mechanism where the broken base pair is bypassed by permitting the replication fork to labor under the site of injury. This is often done by a shift mechanism wherever deoxyribonucleic acid enzyme - δ is switched with DNA enzyme - η (DNAP - η). Site of DNAP - η is massive enough to permit the broken ester to labor under, and so bypass the broken nucleotide. However, this is often potential solely through the involvement of Proliferating cell nuclear antigen (PCNA) that could be a processivity issue and it acts as a platform for the achievement of DNAP - η. Once the DNAP - η is recruited, the DNA bypass mechanism is initiated. PCNA is activated by ubiquitination of essential amino acid residue by Rad6-Rad18 advanced. Once Rad6 is ubiquitylated, it forms complex with Rad18 and this complex then ubiquitylated PCNA that successively initiates error-free DNA bypass repair. Typically, attributable to exposure to radiation the Rad6-Rad18 advanced is not shaped. Within the absence of Rad6-Rad18 advanced, PCNA isn't activated and DNAP - η isn't recruited at the harm the site. Therefore, deoxyribonucleic acid bypass mechanism isn't initiated. We tend to intend the activation of Rad6 by the triazole compounds to make a complex with Rad18 and ubiquitination of PCNA to initiate deoxyribonucleic acid bypass repair
Objective: Synthesis, Characterization of formazan derivatives and studies the antioxidant activity of prepared compounds and molecular docking. Methods: In this study, formazan compounds (III–XIV) were produced by combining Schiff base compounds (I), (II) with diazonium salts resulting from reactions of different aromatic amines with sodium nitrate in the presence of Con.HCl at 0–5°C. When isonicotinic acid hydrazide reacts with (N,N-dimethylbenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde) in the presence glacial acetic acid as a solvent Schiff base compounds are created. Results: The prepared compounds were identified by FT-IR, 1H NMR, 13C NMR, then the antioxidant activity of the derivatives and molecular docking were studied. D
... Show MoreThis study outlines the synthesis of substituted 1,2,4-triazole derivatives through the cyclization reaction of thiourea derivatives. The process begins with the reaction of different halides with KSCN to produce isothiocyanate derivatives. then followed by a reaction with isonicotinic acid hydrazide to yield thioureas (1-6), with a yield rate of (72-88%). Then, compounds (1-6) were treated with alkaline medium 4 N (NaOH) to produced 1,2,4-triazole derivatives (7-12) with a yield (51-69%).The structure of the prepared compounds was characterized using FTIR,1HNMR and 13CNMR spectroscopy. Some of the synthesized compounds were tested for antimicrobial activity when, compound 9 showed strong activity against gram positive bacteria (Sta
... Show MoreObjective Using two complementary techniques of virus detection human papillomavirus (HPV)[capture of hybrids (CH) and polymerase chain reaction (PCR)], relate the cytological study and/or cervical biopsy with high-risk HPV (HPV-HR) genotypes presence, as well as relating their viral load (VL). Methods About 272 women, who presented most cell alterations compatible with lesions cervical HPV, which has been detected in all high risk by the CH method and HPV genotype detection by PCR. Results In 22% of the patients it was not detected HPV DNA. Genotype 16 and/or 18 was prevalent and was found in 33% of the 212 women studied, meanwhile, mixed infections were found by several genotypes in 25%. In as for the histological lesions found, in 61 pat
... Show MoreBeta thalassemia major (BTM) is a genetic disorder that has been linked to an increased risk of contracting blood-borne viral infections, primarily due to the frequent blood transfusions required to manage the condition. One such virus that can be transmitted through blood is the Human Parvovirus B19 (B19V). The aim of this study was to investigate the frequency and molecular detection of B19V. This study included 60 blood donors as controls and 120 BTM patients. B19V was identified by serology, which measured B19-IgG and B19-IgM antibodies. Nested Polymerase Chain Reaction (nPCR) was employed to target the VP1/VP2 structural proteins. The results showed that B19V seropositivity represents 27.5% (33 out of 120) in BTM patients, and
... Show MoreNon-steroidal anti-inflammatory drugs (NSAIDs) contain free –COOH which thought to be responsible for the GI irritation associated with all traditional NSAIDs. The esterification of this group is one of an approach to ultimate aim for reduce the gastric irritation; so in this study we synthesized and preliminarily evaluated new ester compounds as new analogues with expected selectivity toward COX-2 enzyme. Synthetic procedures have been successfully developed for the generation of the target compounds (III a and b). The synthetic approach involved multi-steps procedures which include: Synthesis of 4-hydroxy benzene sulphonamide ( I b ), synthesis of Naproxen and Ibuprofen acyl chloride and then reacting them with 4-hydroxy benzene sulphon
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
A Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show More