Background: The treatment of schizophrenia typically involves the use of olanzapine (OLZ), a typical antipsychotic drug that has poor oral bioavailability due to its low solubility and first-pass effect. Objective: To prepare and optimize OLZ as nanoparticles for transdermal delivery to avoid problems with oral administration. Methods: The nanoprecipitation technique was applied for the preparation of eight OLZ nanoparticles by using different polymers with various ratios. Nanoparticles were evaluated using different methods, including particle size, polydispersity index (PDI), entrapment efficiency (EE%), zeta potential and an in vitro release study. The morphology was evaluated by a field emission scanning electron microscope (FESEM) and an atomic force microscope (AFM). We also perform differential scanning calorimetry (DSC). Results: Characterization studies of OLZ nanoparticles showed that OLZ-6 was the best formula with a particle size of 115.76 nm, a PDI of 0.24, a high EE% of 78.4%, and a high zeta potential of -19.01 mV. The in vitro release of OLZ was higher than that of other formulations. FESEM reveals the spherical shape of the nanoparticles, and AFM screening confirms that the OLZ-6 size is comparable to what the Zeta sizer finds. The DSC results confirm the purity of OLZ and the compatibility between the drug and polymer. Conclusions: OLZ-6, as a transdermal delivery system, is a promising formula to overcome the problems associated with oral drug administration and could enhance its bioavailability.
Conventional dosage forms for topical and transdermal drug delivery have several disadvantages related mainly to its poor skin permeation and patient compliance. Many approaches have been developed to improve these dosage forms. Film forming drug delivery systems represents a recent advancement in this field. It provides improved patient compliance with enhanced skin permeation of drugs. In its simplest form, these consist of a polymeric solution, usually in a supersaturated state, in a suitable solvent. A plasticizer is usually added to improve the flexibility and enhance the tensile strength to the film. It is also possible to control and sustain the drug release from the films by controlling the polymeric content, concentration o
... Show MoreThe aim of this study is to formulate and evaluate ezetimibe nanoparticles using solvent antisolvent technology. Ezetimibe is a practically water-insoluble drug which acts as a lipid lowering drug that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe prepared as nano particles in order to improve its solubility and dissolution rate.
Thirty formulas were prepared and different stabilizing agents were used with different concentrations such as poly vinyl pyrrolidone (PVPK-30), poly vinyl alcohol (PVA), hydroxy propyl methyl cellulose E5 (HPMC), and poloxamer. The ratios of drug to stabilizers used to prepare the nanoparticles were 1: 2, 1:3 and 1:4.
The prepared nanoparticles
... Show MoreMagneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i
... Show MoreIncreasing requests for modified and personalized pharmaceutics and medical materials makes the implementation of additive manufacturing increased rapidly in recent years. 3D printing has been involved numerous advantages in case of reduction in waste, flexibility in the design, and minimizing the high cost of intended products for bulk production of. Several of 3D printing technologies have been developed to fabricate novel solid dosage forms, including selective laser sintering, binder deposition, stereolithography, inkjet printing, extrusion-based printing, and fused deposition modeling. The selection of 3D printing techniques depends on their compatibility with the printed drug products. This review intent to provide a perspecti
... Show MoreObjective: The study aim to evaluate of women's knowledge and personal preference about the place
of delivery in Baghdad City
Methodology:
descriptive study conducted in baghdad city on the mothers for the period from the 14th of December,
2015 to the 14th of April 2016. The sample of study included 500 mothers who were attending to
primary health care centers have been chosen sample of 26 primary health care center by a multi-stage
Simple random sampling Data was collected through a constructed questionnaire, validity Data was
analyzed by using of descriptive and inferential data analysis methods .
Results: The results indicated that approximately (29.4%) of the mothers in the age group (20-24) and
the average
Objective: The purpose of this work was to develop and optimize the emulgel formulation of piroxicam with two types of gelling agent chitosan and xanthan gum. The release profiles of prepared formulas were investigated. In addition, the rheology and stability of the best formula were investigated.Methods: Emulsified piroxicam was prepared to use oleic acid, tween 80 and PG with a ratio (3:10:10). In xanthan based emulgel, the xanthan gum (1% and 1.5%) was spread as powder on emulsified piroxicam with stirring until emulgel was formed. In chitosan-based emgels, Chitosan gel was added to emulsified piroxicam and stirring until the Emulgel was constructed. Chitosan gels were prepared by incorporating different concentration, 2%, 3%, 6%
... Show MoreThis paper deals with the preparation and investigation studies of a number of new complexes of Cu(II) , Zn(II) , Hg(II) , Ag(I) , Pt(IV) and Pb(II).The complexes were formed by the reaction of the mentioned metal ions with the ligand which is derived from oxadiazole (OXB), 2- (2-butyl) thio-5- phenyl – 1,3,4 – oxadiazole in the mole ratio (1:1) , (1:2) and (1:3) (metal to ligand ).The result complexes having general formulae :M(OXB)Cl2] [M(OXB)X2]H2O [ M= Cu(II) , Zn(II) M= Hg(II) , Pb(II) [M(OXB)2 X2] X= Cl– M = Cu (II), Zn (II), Hg (II), Pb (II) X= Cl–, NO3-, CH3COO- [Pt(OXB)3]Cl4 [Ag(OXB)]NO32-(2-??????? ) ???? -5- ???
... Show More
