The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).
Background: The integration of modern computer-aided design and manufacturing technologies in diagnosis, treatment planning, and appliance construction is changing the way in which orthodontic treatment is provided to patients. The aim of this study is to assess the validity of digital and rapid prototyped orthodontic study models as compared to their original stone models. Materials and methods: The sample of the study consisted of 30 study models with well-aligned, Angle Class I malocclusion. The models were digitized with desktop scanner to create digital models. Digital files were then converted to plastic physical casts using prototyping machine, which utilizes the fused deposition modeling technology. Polylactic acid polymer was chose
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreAbstract The results of isolation, morphological and microscopic diagnosis, Chromic Agar, Vitik technology and Bact Alert showed that the diagnosis of fungi isolated from blood samples of end-stage renal patients who did not undergo dialysis and those who underwent dialysis was 60 samples for each type. The total number of fungal isolates isolated from people who did not undergo dialysis was 26 pathogenic fungal isolates, with a percentage frequency of 43.33%. In this study, 4 genera of pathogenic fungi were identified: Candida spp, Rhodotorula spp, Cryptococcus spp. and Aspergillus spp. The number of Candida isolates reached 13 isolates, with a frequency of 50%. The results also showed that the diagnosed species from the genus Rhodotorula
... Show MoreA numerical study of the two-dimensional steady free convection flow in an inclined annulus between two concentric square cavities filled with a porous medium is presented in this paper for the case when the side outer walls are kept with differentially heated temperature while the horizontal outer walls and the inner walls are insulated. The heated wall is assumed to have spatial sinusoidal temperature variation about a constant mean value. The Darcy model is used and the fluid is assumed to be a standard Boussinesq fluid. For the Cartesian coordinate system, the governing equations which were used in stream function form are discretized by using the finite difference method with successive under – relaxation method (SUR) and are solv
... Show MoreNon-alcoholic fatty liver disease (NAFLD) is one of chronic liver and defines by fat accumulation ≥5% in liver which can progresses to non-alcoholic steatohepatitis (NASH). NAFLD related to obesity as well as non obese individuals. Adiponectin is a cytokine secreted from adipose tissue involved NAFLD pathogenesis and liked with obesity. Irisin is a myokine, has a convenient effect against metabolic diseases such as obesity, disylipemia diabetes type 2 and reversed liver steatosis and may be related with NAFLD. Vitamin D is one of the fat soluble vitamins and more precisely as a pro-hormone through its metabolite (1,25(OH)2 cholecalciferol) the major steroid hormone. After the skin exposure to the light, vitamin D undergoes to
... Show MoreThe Flanagan Aptitude Classification Tests (FACT) assesses aptitudes that are important for successful performance of particular job-related tasks. An individual's aptitude can then be matched to the job tasks. The FACT helps to determine the tasks in which a person has proficiency. Each test measures a specific skill that is important for particular occupations. The FACT battery is designed to provide measures of an individual's aptitude for each of 16 job elements.
The FACT consists of 16 tests used to measure aptitudes that are important for the successful performance of many occupational tasks. The tests provide a broad basis for predicting success in various occupational fields. All are paper and pen
... Show More