The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample sizes (50, 100, 200). A comparison between non-linear SVM and two standard classification methods was illustrated using various compared features. Our study has shown that the non-linear SVM method gives better results by checking: sensitivity, specificity, accuracy, and time-consuming. © 2024 Author(s).
This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid
Background :Atherosclerosis is the most
frequent underlying cause of ischemic heart
disease and a major cause of death all over the
world. This study was carried out to analyze and
compare the angiographic findings in patients
with diabetes mellitus versus non diabetics with
coronary heart disease , and to correlate these
findings with some risk factors for coronary
heart disease.
Methods: A total of 100 patients were studied,
50 with diabetes mellitus, and 50 non diabetics.
This study was carried out at Al-Sadr teaching
hospital in Basrah, Southern Iraq during the
period April 2009- September 2009. All patients
were known to have coronary heart disease. Risk
factors for coronary heart disease
This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia
Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol
... Show MoreThe fuzzy assignment models (FAMs) have been explored by various literature to access classical values, which are more precise in our real-life accomplishment. The novelty of this paper contributed positively to a unique application of pentagonal fuzzy numbers for the evaluation of FAMs. The new method namely Pascal's triangle graded mean (PT-GM) has presented a new algorithm in accessing the critical path to solve the assignment problems (AP) based on the fuzzy objective function of minimising total cost. The results obtained have been compared to the existing methods such as, the centroid formula (CF) and centroid formula integration (CFI). It has been demonstrated that operational efficiency of this conducted method is exquisitely develo
... Show MoreThe experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are app
... Show MoreThe influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show More