Improving the permanent deformation resistance of asphalt pavements is a vital challenge. Nanomaterials have emerged as promising additives due to their ability to enhance the binder stiffness and elasticity. This study evaluated the influence of five nanomaterials, namely Nano-Silica (NS), Nano-Alumina (NA), Nano-Zinc (NZ), Nano-Titanium (NT), and Carbon Nanotubes (CNTs) incorporated into a base asphalt binder at varying dosages, with up to 10% for NS, NA, and NT, and up to 5% for NZ and CNT. Fifteen modified binders were assessed using the Multiple Stress Creep Recovery (MSCR) test to obtain non-recoverable creep compliance (Jnr), while the corresponding hot mix asphalt samples underwent repeated load testing and rut depth prediction using the VESYS 5 W model. The results showed that most nanomaterials improved the high-temperature binder properties with a reduced rutting potential. Strong correlations were observed between Jnr and the mixture performance for NS and NZ, whereas NA and CNTs enhanced the mixture stiffness and deformation resistance beyond what was indicated by Jnr alone. NT showed minimal correlation between the binder and mixture performance. While Jnr is a valuable parameter for rutting prediction, it may not always accurately reflect the nano-modified mixture performance, particularly when using higher modification dosages. Therefore, combining the binder with mixture tests provides a reliable performance prediction and optimal nanomaterial selection.
Background: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreNew mixed ligand complexes of New Schiff base 4,4'- ((naphthalen-1-ylimino) methylene) dibenzene-1,3-diol and 8-hydroxy quinoline: Synthesis, Spectral Characterization, Thermal studies and Biological Activities
Enticed by the present scenario of infectious diseases, four new Co(II), Ni(II), Cu(II), and Cd(II) complexes of Schiff base ligand were synthesized from 6,6′-((1E-1′E)(phenazine-2,3-dielbis(azanylidene)-bis-(methanylidene)-bis-(3-(diethylamino)phenol)) (
The Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MoreAn abstract is a brief summary of a research article, thesis, Schiff base ligand (L) was prepared by the reaction of 4-aminantipyrine with o-phenylenediamine, the prepared ligand characterized by Micro elemental Analysis, FT. IR, UV-Vis, and 1H,13C-NMR spectroscopy.complexes of Mn(II), Co(II), Ni(II), Cu(II) and Hg(II) with Schiff base and 1,10-phenanthroline (Phen) have been investigated in aqueous ethanol with (1:1:1) (M:L:Phen). The prepared complexes were characterized using flame atomic absorption, (C. H. N) Analysis, FT. IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. From the obtained data the octahedral structure was suggested for all complexes. The biological screening effects o
... Show More