High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the international shortwave radio stations and the global beacons as the OIS transmitter and a normal HF receiver as the OIS receiver to verify the direction of propagation and the FOT. In addition, the critical frequency for F2 layer (fof2) was estimated in this paper for Iraq experimentally. The proposed technique was tested practically, and FOT range between Baghdad and other remote stations was estimated successfully using a radio receiver from Kenwood model R 1000 with a long wire antenna as a passive OIS system receiver.
A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreUpper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin
... Show MoreIn the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show MoreThe Nuclear structure of 110-116Cd isotopes was studied theoretically in the framework of the interacting boson model of IBM-l and IBM-2. The properties of the lowest mixed symmetry states such as the 1+, 2+ and 3+ levels produced by the IBM-2 model in the vibrational-limit U(5) of Cd - isotopes are studied in details. This analysis shows that the character of mixed symmetry of 2+ is shared between and states in 110-114Cd – isotopes, the large shar goes to s, while in isotope, the state is declared as a mixed symmetry state without sharing. This identification is confirmed by the percentage of F-spin contribution. The electromagnetic properties of E2 and Ml operators were investigated and the results were analyzed. Various
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.
This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show More