Preferred Language
Articles
/
qBf-OpMBVTCNdQwCHM9M
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson kernel estimator method with the proposed kernel function (AMS), the Gaussian kernel, and the ordinary least squares (OLS) method. Additionally, it determines which method yields the most accurate results when analyzing nonparametric regression models and provides valuable insights for practitioners looking to apply these techniques in real-world scenarios. However, criteria such as generalized cross-validation (GCV), mean square error (MSE), and coefficient determination are used to select the most efficient estimated model. Simulated data was used to evaluate the performance and efficiency of estimators using different sample sizes. The results favorable the simulation illustrate that the Nadaraya-Watson kernel estimator using the proposed kernel function (AMS) exhibited favorable and superior performance compared to other methods. The coefficients of determination indicate that the highest values attained were 98%, 99%, and 99%. The proposed function (AMS) yielded the lowest MSE and GCV values across all samples. Therefore, this suggests that the model can generate precise predictions and enhance the performance of the focused data.

Scopus Crossref
View Publication
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Two of (Turnbull) and (Generalization Turnbulls)non-parametric methods in estimating conditional survival function (applied study on breast cancer patients)
...Show More Authors

   This research includes the application of non-parametric methods in estimating the conditional survival function represented in a method (Turnbull) and (Generalization Turnbull's) using data for Interval censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy and age is continuous variable, The algorithm of estimators was applied through using (MATLAB) and then the use average Mean Square Error (MSE) as amusement  to the estimates and the results showed (generalization of Turnbull's) In estimating the conditional survival function and for both treatments ,The estimated survival of the patients does not show very large differences

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Analyzing big data sets by using different panelized regression methods with application: Surveys of multidimensional poverty in Iraq
...Show More Authors

Poverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc

... Show More
View Publication
Scopus
Publication Date
Thu Aug 01 2024
Journal Name
Iop Conference Series: Earth And Environmental Science
Combining Bourgoyne and Young Equations by Bagging Tree Regression to Predict Rate of Penetration in a Southern Iraqi Field, Case Study
...Show More Authors
Abstract<p>Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Selection of the initial value of the time series generating the first-order self-regression model in simulation modeAnd their impact on the accuracy of the model
...Show More Authors

In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method  and the least squares method and that using the method of simulation model  first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.

                  

View Publication Preview PDF
Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers
...Show More Authors

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

View Publication Preview PDF
Crossref
Publication Date
Thu May 14 2020
Journal Name
Journal Of Planner And Development
“The role of parametric approach in design highest climatic performance buildings: local housing design patterns as a sample”
...Show More Authors

In light of increasing demand for energy consumption due to life complexity and its requirements, which reflected on architecture in type and size, Environmental challenges have emerged in the need to reduce emissions and power consumption within the construction sector. Which urged designers to improve the environmental performance of buildings by adopting new design approaches, Invest digital technology to facilitate design decision-making, in short time, effort and cost. Which doesn’t stop at the limits of acceptable efficiency, but extends to the level of (the highest performance), which doesn’t provide by traditional approaches that adopted by researchers and local institutions in their studies and architectural practices, limit

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq
...Show More Authors

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimation of the reliability function of the Rayleigh distribution using some robust and kernel methods
...Show More Authors
Abstract<p>The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such </p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref