Preferred Language
Articles
/
qBf-OpMBVTCNdQwCHM9M
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson kernel estimator method with the proposed kernel function (AMS), the Gaussian kernel, and the ordinary least squares (OLS) method. Additionally, it determines which method yields the most accurate results when analyzing nonparametric regression models and provides valuable insights for practitioners looking to apply these techniques in real-world scenarios. However, criteria such as generalized cross-validation (GCV), mean square error (MSE), and coefficient determination are used to select the most efficient estimated model. Simulated data was used to evaluate the performance and efficiency of estimators using different sample sizes. The results favorable the simulation illustrate that the Nadaraya-Watson kernel estimator using the proposed kernel function (AMS) exhibited favorable and superior performance compared to other methods. The coefficients of determination indicate that the highest values attained were 98%, 99%, and 99%. The proposed function (AMS) yielded the lowest MSE and GCV values across all samples. Therefore, this suggests that the model can generate precise predictions and enhance the performance of the focused data.

Scopus Crossref
View Publication
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Model Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

Theresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Evaluating the Efficiency of the Municipal Sector in Anbar Governorate, using the Non-Parametric Approach (DEA).
...Show More Authors

 

The research aims to measure, assess and evaluate the efficiency of the directorates of Anbar Municipalities by using the Data Envelopment Analysis method (DEA). This is because the municipality sector is consider an important sector and has a direct contact with the citizen’s life. Provides essential services to citizens. The researcher used a case study method, and the sources of information collection based on data were monthly reports, the research population is represented by the Directorate of Anbar Municipalities, and the research sample consists of 7 municipalities which are different in terms of category and size of different types. The most important conclusion reached by the research i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing
...Show More Authors

 

Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of losing one view of the independent variableAnd its location in simple regression analysis
...Show More Authors

The objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimation methods for regression model parametersIn the case of the problem of linear multiplicity and abnormal values
...Show More Authors

 A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators

View Publication Preview PDF
Crossref
Publication Date
Thu Mar 29 2018
Journal Name
Construction Research Congress 2018
Validation of Time-Safety Influence Curve Using Empirical Safety and Injury Data—Poisson Regression
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
USE OF MODIFIED MAXIMUM LIKELIHOOD METHOD TO ESTIMATE PARAMETERS OF THE MULTIPLE LINEAR REGRESSION MODEL
...Show More Authors

Scopus
Publication Date
Sat Oct 02 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Using the wavelet analysis to estimate the nonparametric regression model in the presence of associated errors
...Show More Authors

Abstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f

... Show More