An accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive condition inspection data for measuring the waiting times of the pipes at each condition class.
Solar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreVisible light communication (VLC) is an upcoming wireless technology for next-generation communication for high-speed data transmission. It has the potential for capacity enhancement due to its characteristic large bandwidth. Concerning signal processing and suitable transceiver design for the VLC application, an amplification-based optical transceiver is proposed in this article. The transmitter consists of a driver and laser diode as the light source, while the receiver contains a photodiode and signal amplifying circuit. The design model is proposed for its simplicity in replacing the trans-impedance and transconductance circuits of the conventional modules by a simple amplification circuit and interface converter. Th
... Show MoreCurrently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreThe study aims to select suitable ornamental plant species that can survive relatively with high concentrations of acetaminophen and methylparaben in constructed wetlands. Alternanthera spp, Asparagus aethiopicus and Chlorophytum comosum are examined to withstand three initial concentrations, 20, 100 and 200 mg/L of acetaminophen and methylparaben. A total of 21 plastic pails with each 3 L capacity consisting of nine pails are used for each pharmaceutical and personal care products (PPCPs) compounds (acetaminophen and methylparaben) for three ornamental plants (Alternanthera spp, Asparagus aethiopicus and Chlorophytum comosum), with three pails as plant controls. The results reveales
... Show MoreAs an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show More