Listeria spp. is one of the abortion causative agents in animals, especially in ruminants. This work aimed to detect Listeria spp. in milk and aborted fetus cows in Iraq. A total of 50 organ samples from aborted cow fetuses, including (brain, liver, and spleen), and 50 milk samples from the same aborted cows were collected from Baghdad farms, Iraq from (October 2023- March 2024). The bacteria were identified by conventional culture methods, biochemical tests, and the VITEK2 compact system, followed by molecular confirmation. The antimicrobial resistance pattern assay was performed using the disc diffusion method against eight antibiotic agents, and the L.monocytogenes virulence genes involving prfA,actA, and hylA genes were detected using the PCR. The results revealed that only L. monocytogenes was detected at 2/50(4%) from aborted fetuses isolated from the brain and liver, while not in milk samples. The L.monocytogenes showed 100% resistance against erythromycin, ampicillin, cotrimoxazole, chloramphenicol, vancomycin, and tetracycline. At the same time, all the isolates had a high MDR and MAR (Multiple Antibiotic Resistance) index. This study concluded that L.monocytogenes is one of the abortion causative agents in cattle in Iraq, and the high antibiotic resistance of Listeria leads to economic loss and a possible risk to humans.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreWith the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreKlebsiella pneumoniae is among the most frequent microorganisms isolated from infections of burn wounds. This cross-sectional study aimed to investigate the distribution of multi-drug resistant (MDR) K. pneumoniae in two burn hospitals and the antibiotic resistance profile in different burn regions of the same patient. It was performed in two hospitals (Al-Zahraa and Al-Karama) in Al-Kut, Iraq, between January and May 2022. Totally, 100 burn swabs were collected from 40 patients of both genders suffering from burn wound infections, with ages ranging between 3 and 50 years. Klebsiella pneumoniae were isolated and identified using conventional methods followed by VITEK®2 system and confirmed via polymerase chain reaction targeting t
... Show MoreThe predatory bush crickets Saga ephippigera Fischer Von Waldheim, 1846 is the largest Iraqi orthopterans and one of the most active and successful predators in the Kurdistan region. The nymphs and adults prey on all the stages of various species of insects. Twelve adult specimens were collected from Erbil Province during May 2018 and June 2021. Morphological structures of the adult insects were described and illustrated in details; important taxonomic characteristics of body regions with their appendages were chosen; and the results indicated the importance of morphological characteristics which confirmed the identification of this species correctly.
Variation in the numbers of pectoral fin spines and rays, pelvic fin rays, gill rakers on the first gill arch, anal fin rays, and the number of vertebrae of Silurus triostegus Heckel were examined in specimens from 16 localities that span its entire distribution range in the Tigris, Euphrates, and Shatt al-Arab rivers in Iraq. The mean number of the six meristic traits increases toward high latitudes with maximum and minimum values in the north and south of Iraq. Based on cluster analysis and PCA, the Mesopotamian river samples were clearly separated into three distinct groups. The upper Tigris populations were isolated from those of the middle and southern populations of this river and from those of