Bacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used to determine their spectral and physicochemical features. Compound YA3N is more effective than ciprofloxacin against
Levofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreNew derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
In this research four steps of the new derivatives of Naproxen drug have been made which are known as a high medicinal effectiveness; the first step involved converting Naproxen into the corresponding ester (A) by reaction Naproxen with methanol absolute in presence H2SO4. While the second step involved treatment methyl Naproxen ester (A) with hydrazine hydrate 80% in presence of ethanol .The third reaction requires synthesis of Schiff bases (C1-C10) by condensation. of Naproxen hydrazide (B) with many substituted aromatic aldehydes . Finally, the fourth step synthesized new tetrazole derivatives ( D1- D10) by the reaction of the prepared Schiff bases (in the third step) with Sodium azide in THF as a solvent .The prepared compounds wer
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, µeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show More