The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment coefficient for (0o, 2o, 4o, 6o, 8o, 10o) angles of attack. SOLIDWORK 2016 software, was used to design the geometry of the wing and winglet. ANSYS FLUENT 17.0 in three dimensions with (k - ε) turbulent model was used to solve the governing equations. The experimental tests were carried out in an open low subsonic wind tunnel of 70cm × 70cm ×150cm test section at Reynolds number of 4.33 x105. The experimental lift, drag forces and pitching moment measurement were considered by three component balance device at different angles of attack. The results show that 34o cant angle is the best angle, at which 2-3% increase in lift coefficient, 2-3.9% decrease in drag coefficient, 3.5-6% increase in pitching moment coefficient and 3-6.6% increase in lift to drag coefficient by using blended winglet. Good agreement between the experimental and computational results are shown.
This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
Background: The marginal seal is essential for sealant success because penetration of bacteria under the sealant might allow caries onset or progression. The aim of the present study was to estimate and compare the microleakage of pit and fissure sealant after various methods of occlusal surface preparation. Materials and methods: Thirty non-carious premolars extracted for orthodontic reasons were equally divided into three groups. In group one, occlusal fissures were opened with round carbide bur, in group two, occlusal surfaces of the teeth were cleaned with a dry pointed bristle brush and samples of group three were cleaned with a slurry of fine flour of pumice in water using rubber cup. Then fissures of all teeth were etched using 35% p
... Show MoreBackground: Esthetic treatment is the options of patient seeking orthodontic treatment. Therefore this study was conducted to measure the concentration of Aluminum, Nickel, Chromium and Iron ions released from combination of monocrysralline brackets with different arch wires immersed in artificial saliva at different duration, to evaluate the corrosion point on different parts of the orthodontic appliances before and after immersion in artificial saliva, and to evaluate the corrosion potential of each group of the orthodontic appliances. Material and methods: Eighty orthodontic sets prepared. Each set represents half fixed orthodontic appliance, from the central incisor to the first molar, for the maxillary arch, each set consisted of molar
... Show MoreBackground and objectives: This study aimed at testing the effect of plastic sleeve or barrier, used to cover the guide of the light cure unit to prevent cross-infection, on the shear bond strength and site of bond failure of stainless steel and ceramic orthodontic brackets. Materials and methods: Forty orthodontic brackets; twenty stainless steel and twenty ceramic brackets bonded to forty extracted human maxillary first premolars using light cure adhesive cured with and without the use of a protective plastic barrier on the guide. Comparing the effect of this barrier on the shear bond strength and adhesive remnant index was performed using an independent t-test and Chi-square test. Results: The protective barrier had decreased the shear b
... Show MoreBackground: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show MoreBackground: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreHands have consistently been an important vehicle in the transmission of disease (1). Thus, thorough hand-washing remains the single most important factor in preventing infection specially in hospitals and labs.Twenty-nine non-clinical volunteers (do not work or come in contact with a clinical or hospital setting) that lacked visible skin injuries, eczema or apparent skin disease were used, those subjects were all tested by a material of each of the three used in the study weekly and laboratory tests were done pre- and post washing.All three material were effective , Eugenol extract as effective as the bar and lotion soap. And this was confirmed statistically.Eugenol has a great antibacterial action even in small concentration and t
... Show More