Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse detection techniques using two DM classifiers (Interactive Dichotomizer 3 (ID3) classifier and Naïve Bayesian (NB) Classifier) to verify the validity of the proposed system in term of accuracy rate. A proposed HybD dataset used in training and testing the hybrid IDS. Feature selection is used to consider the intrinsic features in classification decision, this accomplished by using three different measures: Association rules (AR) method, ReliefF measure, and Gain Ratio (GR) measure. NB classifier with AR method given the most accurate classification results (99%) with false positive (FP) rate (0%) and false negative (FN) rate (1%).
In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreRecord, verify, and showcase your peer review contributions in a format you can include in job and funding applications (without breaking reviewer anonymity).
To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show MoreThe physical and elastic characteristics of rocks determine rock strengths in general. Rock strength is frequently assessed using porosity well logs such as neutron and sonic logs. The essential criteria for estimating rock mechanic parameters in petroleum engineering research are uniaxial compressive strength and elastic modulus. Indirect estimation using well-log data is necessary to measure these variables. This study attempts to create a single regression model that can accurately forecast rock mechanic characteristics for the Harth Carbonate Formation in the Fauqi oil field. According to the findings of this study, petrophysical parameters are reliable indexes for determining rock mechanical properties having good performance p
... Show MoreThis paper aims to develop a technique for helping disabled people elderly with physical disability, such as those who are unable to move hands and cannot speak howover, by using a computer vision; real time video and interaction between human and computer where these combinations provide a promising solution to assist the disabled people. The main objective of the work is to design a project as a wheelchair which contains two wheel drives. This project is based on real time video for detecting and tracking human face. The proposed design is multi speed based on pulse width modulation(PWM), technique. This project is a fast response to detect and track face direction with four operations movement (left, right, forward and stop). These opera
... Show MoreThe aim of this work is to develop an axi-symmetric two dimensional model based on a coupled simplified computational fluid dynamics (CFD) and Lagrangian method to predict the air flow patterns and drying of particles. Then using this predictive tool to design more efficient spray dryers. The approach to this is to model what particles experience in the drying chamber with respect to air temperature and humidity. These histories can be obtained by combining the particles trajectories with the air temperature/humidity pattern in the spray dryer. Results are presented and discussed in terms of the air velocity, temperature, and humidity profiles within the chambers and compared for drying of a 42.5% solids solution in a spray chamber
... Show MoreAs computers become part of our everyday life, more and more people are experiencing a
variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation,
redness, blurred vision, and double vision, collectively referred to as computer vision syndrome.
The effect of CVS to the body such as back and shoulder pain, wrist problem and neck pain.
Many risk factors are identified in this paper.
Primary prevention strategies have largely been confined to addressing environmental
exposure to ergonomic risk factors, since to date, no clear cause for this work-related neck pain
has been acknowledged. Today, millions of children use computers on a daily basis. Extensive
viewing of the compute