Background and Aim: The use of food dyes can cause certain diseases, such as anemia and indigestion, along with other disorders, tumors, and even cancer. Therefore, this study aimed to determine the chemical nature and toxicity of some commercial dyes locally used in processed foods compared with standard food dyes. Materials and Methods: Three types of standard and commercial food color additives (Sunset Yellow, Tartrazine, and Carmoisine) were extensively examined. The chemical structures and functional groups of the dyes were evaluated by Fourier-transform infrared (FTIR) spectroscopy. The melting temperatures of the dyes were also determined by chemical thermal analysis. The acute toxicity test to evaluate the standard and commercial food color safety was estimated by a range-finding study using 150 Wistar albino rats. Sub-groups were administered one of the three colors under study at doses of 2, 3, 4, and 5 g/kg body weight (BW) orally for 7 days. When no mortality was observed, an additional 15 g/kg BW was administered. Concerning the median lethal dose 50 (LD50), 38 rats were exploited using the up-and-down method. Results: Commercial dyes had lower melting points than standard colors. Regarding the range-finding study, rats receiving different doses of the dyes exhibited no signs of toxicity, no deaths, and no clinical or gross pathological signs throughout the 7 days of the experiment. However, the animals that were dosed with 15 g/kg BW of each dye showed signs of loss of appetite, tachycardia, drowsiness, and eventual death. The LD50 values of the commercial food dyes, particularly Sunset Yellow and Carmoisine, were lower than those of the standard dyes. Conclusion: Commercial food colors were more toxic to rats than standard food colors. Differences were observed between the purity of the standard and commercial dyes, and the latter ones contained different percentages of salt, indicating the occurrence of fraud in commercial markets. Keywords: acute toxicity, food colors, Fourier-transform infrared spectroscopy, lethal dose 50, range-finding study.
This work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], the reaction of this compound with theiosemicarbazide led to produce a new carbothioamide compound [V], which was reacted with ethyl chloro acetate to yield the thioxoimidazolidin compound [VI]. The condensation reactions of this compound with different substituted aldehyde give new alkene derivatives [VII] ad. The synthesized compounds were characterized by melting points, FT-IR, 1H-NMR and Mass spectroscopy.
This work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], thereaction of this compound with theiosemicarbazide ledto produce a new carbothioamide compound [V], Which was reacted with ethyl chloro acetate to yield thethioxoimidazolidin compound [VI]. The condensation reaction of this compound with different substituted aldehyde give new alkene derivatives[VII]a-d. The synthesized compounds were characterized by melting points , FT-IR ,1H-NMR and Mass spectroscopy .
In this paper the new starting material 2-(5-chloro-1H-benzo[d]imidazole-2-yl) aniline (1) was synthesized by the condensation reaction of 4-chloro-o-phenylenediamine and anthranilic acid .The new Mannich base derivatives were synthesized using formaldehyde and different secondary amines to synthesize a new set of benzimidazole derivatives(2-5). Also, the new Schiff-base derivatives (6-10) were synthesized from the reaction of compound (1) with various aromatic aldehydes and the closure-ring was done successfully using mercapto acetic acid to get the new thiazolidine derivatives(11-12).These new compounds were characterized using some physical techniques like:FT-IR Spectra and 1HNMR Spectra.
New series of Schiff bases 2(a-j) and corresponding beta-lactam derivatives 3(a-j) were synthesized from cefalexin (1) as starting material. The compound (1) was reacted with different aldehydes and ketones to give Schiff bases derivatives 2(a-j). The synthesized Schiff bases were cyclized by chloroacetyl chloride in the presence of triethylamine to form beta-lactam derivatives 3(a-j). The compounds were characterized by deremination melting point, FT-IR and 1H NMR. The beta-lactam derivatives were screened in vitro antibacterial against some bacterial species
Activated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show MoreNovel heterocyclic polyimide 5(a,b) have been synthesized based on polyacrylic backbone. The synthetic route start with nucleophilic substitution of 2-amino, or 4-amino, pyridine 1(a,b) to the polyacryloyl chloride afforded poly substituted amide 2(a,b). Another nucleophilic substitution were carried with adipoyl chloride to form polyimide chloride 3(a,b). Treatment of 3(a,b) with hydrazine hydrate afforded acid hydrazide polyimide 4(a,b), which upon cyclocondensation with carbon disulfide gave the target heterocyclic polyimide. The synthesized compounds were identified by spectroscopic methods: FT-IR, 1H-NMR and 13C-NMR.
In this paper a new series of morpholine derivatives was prepared by reacting the morpholine with ethyl chloro acetate in the presence triethylamine as a catalyst in benzene gave morpholin-N-ethyl acetate(1) which reacted with hydrazine hydrate in ethanol, and gave morpholin-N-ethyl acetohydrazide (2) . Morpholin-N-aceto semithiocarbazide (3) were prepared by reacting compound(2) with ammonium thiocyanate , concentrated hydrochloric acid and ethanol as a solvent .Compound (3) reacted with sodium hydroxide and hydrochloric acid to give 5-(morpholin-N-methylene)-1H-1,2,4-triazole-3-thiol (4) .The new series of 1,2,4-triazol derivatives (5-8) was synthesized by reaction of compound(4) with formaldehyde , DMF as a solvent and different
... Show MoreSome esters were prepared from reaction of different molecular weight of PVA with some acid chloride (prepared by reaction of acid with thionyl chloride or phosphorous pentachloride)in the presence of pyridine. The thermal and reological properties were studied. The increasing Of bulky groups decreasing stability of the thermal and reological properties.
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show More