Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More Is one of the processes of educational guidance to help the individual to design educational plans that fit with the abilities and inclinations and goals.
And research aims the current instruction program heuristic therapeutic knowledge to deal with emotional disorders. And may the researcher instruct a program according to the theories of interested and competent guidance to education and has studied the large number of studies available in this field, as has been the program on a number of specialists in education and Psychology and took their views. And then was adopted the final version of the indicative program, consistent with the sample, which was built
Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreThe utilization of carbon dioxide (CO₂) to enhance wellbore injectivity presents a cost-effective and sustainable strategy for mitigating greenhouse gas emissions while improving reservoir performance. This study introduces an environmentally friendly method employing a water-soluble chitosan salt (CS) that generates a carbonated-rich acid solution upon contact with dry CO₂ at 25 °C and 508 psi. CS solutions (100–2000 ppm) were prepared and evaluated for CO₂ uptake, acid generation, and rheological behavior. Results show that 1000 ppm achieves an optimal CO2 uptake (2612 mg/l), with moderate viscosity increase (from 1.52 to 3.37 cp), while higher concentrations exhibit a sharp rise due to polymer-like network formation. Core floodi
... Show MoreThe study aims budget in grades use of smart phones to individuals (sample) according variable sex (males and females) and used researcher descriptive analytical method consisted sample of (300) students have chosen the way stratified random, and the study variables (academic achievement of students, sex and the use of Smart phones) resolution was adopted as a tool for data collection. The most important results of the study that females are more commonly used for smart phones, as well as the existence of a positive relationship between the inverse statistically significant use of smart phones and the rate of school for students and the use of smart phones h
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More