Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The results show that the neural network has good performance compared with two other analytical methods which are average positioning method and optimal positioning method.
At the temperature 298.15 K, some physical properties such as: refractive indices (nD), viscosities (η) and densities (ρ) were studied in four liquid-liquid mixtures: carboxylic acids (HCOOH, CH3COOH, CH3CH2COOH and CH3CH2CH2COOH) with tetrahydrofurfuryl alcohol (THFA) with the identified configuration set. These empirical data were utilized to estimate the excess molar volumes (Vm E), refractive index perversions (ΔR), viscosity deviations (ηE) and excess molar Gibbs free energy (ΔG*E). Values of Vm E, ηE , ΔG*E and ΔR were plotted versus mole fraction of tetrahydrofurfuryl alcohol. In all cases, the values of Vm E, ηE , ΔG*E and ΔR that obtained in this study were found to be negative at 298.15 K. The excess parameters
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreRecently, the development and application of the hydrological models based on Geographical Information System (GIS) has increased around the world. One of the most important applications of GIS is mapping the Curve Number (CN) of a catchment. In this research, three softwares, such as an ArcView GIS 9.3 with ArcInfo, Arc Hydro Tool and Geospatial Hydrologic Modeling Extension (Hec-GeoHMS) model for ArcView GIS 9.3, were used to calculate CN of (19210 ha) Salt Creek watershed (SC) which is located in Osage County, Oklahoma, USA. Multi layers were combined and examined using the Environmental Systems Research Institute (ESRI) ArcMap 2009. These layers are soil layer (Soil Survey Geographic SSURGO), 30 m x 30 m resolution of Digital Elevati
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi
... Show MoreThe major objective of this study is to establish a network of Ground Control Points-GCPs which can use it as a reference for any engineering project. Total Station (type: Nikon Nivo 5.C), Optical Level and Garmin Navigator GPS were used to perform traversing. Traversing measurement was achieved by using nine points covered the selected area irregularly. Near Civil Engineering Department at Baghdad University Al-jadiriya, an attempt has been made to assess the accuracy of GPS by comparing the data obtained from the Total Station. The average error of this method is 3.326 m with the highest coefficient of determination (R2) is 0.077 m observed in Northing. While in
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
This research adopts the estimation of mass transfer coefficient in batch packed bed distillation column as function of physical properties, liquid to vapour molar rates ratio (L / V), relative volatility (α), ratio of vapour and liquid diffusivities (DV / DL), ratio of vapour and liquid densities (ρV / ρL), ratio of vapour and liquid viscosities (μV/ μL).
The experiments are done using binary systems, (Ethanol Water), (Methanol Water), (Methanol Ethanol), (Benzene Hexane), (Benzene Toluene). Statistical program (multiple regression analysis) is used for estimating the overall mass transfer coefficient of vapour and liquid phases (KOV and KOL) in a correlation which represented the data fairly well.
KOV = 3.3 * 10-10
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati