Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications.
This search aim to measure Hardness for Epoxy resin and for unsaturated Polyester resin as base materials for composite Hybrid and the materials used is Hybrid fiber Carbon-Kevlar. The Hand Lay-up method was used to manufacture plates of Epoxy resin (EP) and unsaturated Polyester EP,UPE backed by Hybrid fiber (Carbon-Kevlar) and with small volume fraction 5,10 and 15 for every there are Layer of fibers (1,2 and 3). The hardness test was count for material EP, UPE resin and there composites and that we notice that the Hardness (HB) decreased with increase of temperatures.
The traction property is one of the important mechanical properties, especially the rotary parts which are subjected to constant and variable loads There are many methods used to improve this property, and the shoot peening by metal balls is considered the most critical one. the study focuses on this characteristic of steel CK35 used in many engineering applications as the rotating shafts and railway This study shows that the fatigue strength is improved by14% after shoot peening with metal balls. The study includs the rehabilitation of damaged samples as a result of fatigue corrosion. The standard solution adopted was 36% MgCl2 with a 30 days immersion period. These samples has been improved by 6% after it decreased by18% d
... Show MoreCarbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreIn the present work the clathrate hydrate dissociation enthalpies of refrigerant R134a+ water system, and R134a + water + salt system were determined. The heat of dissociation of three types of aqueous salts solutions of NaCl, KBr and NaF at three concentrations (0.09, 0.17and 0.26) mol·kg−1 for each salt type, were enthalpy measured. The Clapeyron equation was used tocalculate heat of dissociation of experimental data for binary and ternary system.In order to find the effect of compressibility factor on heat dissociation enthalpy, the study was conducted by using equation of state proposed by Peng and Robinson Stryjek-Vera (PRSV). The obtained results of dissociation enthalpy for binary system were (143.8) kJ.mol-1
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
In this work the corrosion behavior of Al metal was studied by using non- destructive testing (NDT), which is a noninvasive technique for determining the integrity of a material. The ultrasonic waves was used to measure the corrosion which occur by two corrosive medium (0.1N sodium chloride and 0.1N sodium hydroxide) and study the corrosion by weight-loss method and electrochemical method in addition to performance the microscopic inspection for the samples before and after the immersion in the corrosive medium. Corrosion parameters were interpreted in these media which involve corrosion potential (Ecorr) and corrosion current density (icorr). The results indicate that both
... Show MoreThe current search aims to identify First: To measure the level of authoritarian personality among the students of the sample as a whole. Second: Measurement of differences in the level of authoritarian personality among students in the middle school according to the following variables 0.Science (literary, scientific) 8. Sex (male - female) Third: the level of control site level among the students of the sample as a whole. Ra'aa: Measurement of differences in the level of the control site among junior students according to the following variables 0.Science (literary, scientific) 8. Sex (male - female) Fifth: Explain the relationship between the authoritarian personality and the locus of control among the students of the research sample.
... Show MoreTo perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MoreTo determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35
Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More