Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications.
The design, construction and investigation of experimental study of two compound parabolic concentrators (CPCs) with tubular absorber have been presented. The performance of CPCs have been evaluated by using outdoor experimental measurements including the instantaneous thermal efficiency. The two CPCs are tested instantly by holding them on a common structure. Many tests are conducted in the present work by truncating one of them in three different levels. For each truncation the acceptance half angle (θc) was changed. Geometrically, the acceptance half angle for standard CPC is (26o). For the truncation levels for the other CPC 1, 2 and 3 the acceptance half angle were 20o, 26o and 5
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreIn this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show MoreThe current research seeks to identify the most important humanitarian issues of a sacred and very important group in all the heavenly religions and human societies, namely the elderly, to identify their significant problems and health problems, and What are the effects of these problems on their mental health and which is the ultimate goal of human resources in All parts of the world? The study relied on what is available from the sources in the literature starting from the messages of heaven and the Islamic religion followed with humanitarian, social, legal and psychological postulates. The research included four systematic chapters included the definition research and identification of the problem, importance, objectives and terminolo
... Show More