Preferred Language
Articles
/
phZaZ4cBVTCNdQwC5Enp
Direct and inverse source problems for degenerate parabolic equations
...Show More Authors
Abstract<p>Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-posed identification of a space-dependent source from a time-integral observation of the weighted main dependent variable. For both, this inverse source problem as well as its corresponding direct formulation, we rigorously investigate the question of well-posedness. We also give examples of inverse problems for which sufficient conditions guaranteeing the unique solvability are fulfilled, and present the results of numerical simulations. It is hoped that the analysis initiated in this study will open up new avenues for research in the field of direct and inverse problems for degenerate parabolic equations with applications.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Feb 11 2021
Journal Name
Physics In Medicine &amp; Biology
Stereoscopic portable hybrid gamma imaging for source depth estimation
...Show More Authors
Abstract<p>Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surfa</p> ... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Dec 04 2023
Journal Name
Aip Conf. Proc
Double LA-transform and their properties for solving partial differential equations
...Show More Authors

Scopus (6)
Scopus
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Semi-analytical method for solving Fokker-Planck’s equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Thu Mar 03 2022
Journal Name
Italian Journal Of Pure And Applied Mathematics
The inverse exponential Rayleigh distribution and related concept
...Show More Authors

Publication Date
Fri Apr 01 2016
Journal Name
Communications In Nonlinear Science And Numerical Simulation
Simultaneous determination of time and space-dependent coefficients in a parabolic equation
...Show More Authors

View Publication
Scopus (22)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Pure And Applied Microbiology
Mixture Design of Experiments for the Optimization of Carbon Source for Promoting Undecylprodigiosin and Actinorhodin Production
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Inverse Kinematics Optimization for Humanoid Robotic Legs Based on Particle Swarm Optimization
...Show More Authors

Calculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Approximate Solutions for Nonlinear Initial and Boundary Value Problems
...Show More Authors

This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving nonli

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Feb 05 2052
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid analytical method for fractional order Klein–Gordon and Burgers equations
...Show More Authors

Scopus (1)
Scopus
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref