The durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects. Results showed that mixtures containing higher proportions of flat and elongated particles exhibited greater void content, reduced stability, and weaker moisture resistance, with the 1:5 flat-to-elongated ratio showing the most adverse impact (TSR 73.9%, IRS 69.2%). Conversely, increasing coarse aggregate angularity (CAA) enhanced mixture performance, with TSR values rising from 63.5% at 0% angularity to 81.2% at 100% angularity, accompanied by corresponding improvements in IRS. Mineral composition analysis further demonstrated that calcite-based aggregates achieved stronger bonding with asphalt binder and superior resistance to stripping compared to quartz-based ones. These findings confirm that aggregate geometry and mineralogy exert a decisive influence on asphalt mixture durability. They also highlight the need to revise current specifications that permit the use of uncrushed coarse aggregate in asphalt base courses, particularly when such layers may serve as surface courses in suburban or low-volume roads, where long-term resistance to moisture damage is critical.
Background: To assess the alveolar bone crest level (ABCL) by Cone Beam Computed To-mography (CBCT) and to investigate several variables as predictors for the height of the alveolar bone in adolescents. Materials and methods: Age, sex, and ethnic groups were rec-orded for each patient. CBCT images were used to obtain measurements of the interproximal alveolar bone level from the cementoenamel junction (CEJ) to the alveolar crest. The highest measurement in each sextant was recorded along with any presence of a vertical bone defect or calculus. Results: Total of 720 measurements were recorded for 120 subjects. No vertical bony defects or calculus were observed radiographically. Statistically significant (P< 0.05) differences were observed be
... Show MoreIn this work a study and calculation of the normal approach between two bodies,
spherical and rough flat surface, had been conducted by the aid of image processing
technique. Four kinds of metals of different work hardening index had been used as a
surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests. A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights
The approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show MoreABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
The study aimed to evaluate the level of MMP‑2 in acute myeloid leukemia (AML) patients in comparison with that in remission status, and healthy subjects, and to find its correlation with hematologic parameters. This study included sixty newly diagnosed AML patients. Remission status was assessed after induction chemotherapy. The overall survival (OS) was determined after 6 months. The plasma MMP‑2 level was measured at diagnosis by enzyme immunoassay. Twenty‑eight healthy individuals were recruited as a control group. Plasma MMP‑2 was higher in AML patients than in healthy individuals (P = 0.005). The level of MMP‑2 was much higher in the M5 subtype than in the other subtypes (P = 0.0001). There was no statistically significant d
... Show More