Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreAbstract
The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul
... Show MoreMost dinoflagellate had a resting cyst in their life cycle. This cyst was developed in unfavorable environmental condition. The conventional method for identifying dinoflagellate cyst in natural sediment requires morphological observation, isolating, germinating and cultivating the cysts. PCR is a highly sensitive method for detecting dinoflagellate cyst in the sediment. The aim of this study is to examine whether CO1 primer could detect DNA of multispecies dinoflagellate cysts in the sediment from our sampling sites. Dinoflagellate cyst DNA was extracted from 16 sediment samples. PCR method using COI primer was running. The sequencing of dinoflagellate cyst DNA was using BLAST. Results showed that there were two clades of dinoflag
... Show MoreIn recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr
... Show MoreBackground: Corona virus disease 2019 (COVID-19) is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, China, and has since spread globally, leading to an ongoing pandemic.
Aim of study: to review the clinical, lab investigation and imaging techniques, in pediatric age group affected COVID-19 to help medical experts better understand and supply timely diagnosis and treatment.
Subjects and methods: this study is a retrospective descriptive clinical study. The medical records of patients were analyzed. Information’s recorded include demographic data, exposure history, symptoms, signs, laboratory findin
... Show More