In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sample was taken into consideration In order to calculate physical and microstructural characteristics including internal strain, dislocations density, surface area, the number of unit cells, and texture coefficient.
Transparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MorePolyaniline polymer has been prepared by chemical oxidation
polymerization method in laboratory successfully. The PANI and
(PVA+PVP) as a polymer blends in different percentage (30%, 50%,
70%) from Polyaniline was prepared. The sample was studies as
optical properties by UV-vis spectrophotometer at (400-700) nm.
The result of optical energy gap was 2.23 eV for pure (PVA+ PVP)
and with additive was increasing with increasing PANI concentration
to become (2.49 for 30% to 2.52 for 70%) PANI. The goal of this
project is prepare triple blend polymer and study the effect when add
conductive polymer (Polyaniline) on the optical properties and
calculate optical constant as energy gap, refractive index, dielectric
This survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature
... Show MoreLithium–Manganese ferrites having the chemical formula (Li0.5-0.5x Mnx Fe2.5-0.5x O4), (0 ≤ x ≤ 1) were prepared by double sintering powder processing. The density of the ferrite increased with Mn content while the porosity was noticed to decrease. The dielectric constant was found to increase at high frequencies more rapidly than the low ones. The dielectric constant found to decrease with Mn content. The decrease in loss factor with frequency agreed with Deby’s type relaxation process. A maximum of dielectric loss factor was observed when the hopping frequency is equal to the external electric field frequency. Manganese substitution reduced the dielectric loss in ferrite. The variation of tanδ with frequency shows a similar na
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MorePermanent deformation (rutting) of asphalt mixtures is one of the major forms of distress. Aggregate gradation is one of the most important factors affecting the permanent deformation of asphalt mixtures. Other variables are also important to understand their effects on the mixture such as temperature, binder content and compaction level. For this purpose 6 different aggregate gradations have been chosen and each one of them has been manufactured / tested with different variables. The results showed that at relatively low temperature there is little effect of aggregate packing on the permanent deformation. However, as the temperature increases the effect of gradation becomes apparent, in that the better the packing the better the resistance
... Show MoreIron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreTin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K
In this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the
... Show More