Due to the availability of technology stemming from in-depth research in this sector and the drawbacks of other identifying methods, biometrics has drawn maximum attention and established itself as the most reliable alternative for recognition in recent years. Efforts are still being made to develop a user-friendly system that is up to par with security-system requirements and yields more reliable outcomes while safeguarding assets and ensuring privacy. Human age estimation and Gender identification are both challenging endeavours. Biomarkers and methods for determining biological age and gender have been extensively researched, and each has advantages and disadvantages. Facial-image-based positioning is crucial for many applications, including safety and security systems, border control, human engagement in sophisticated ambient analytics, and biometric identification. Determining a person's age and gender is a complex study method. With the advent of deep learning, the study of face systems has been completely transformed, and estimation accuracy is a crucial parameter for evaluating algorithms and their efficacy in predicting absolute ages. The UTKFace dataset, which serves as the backbone of the face estimating system, was used to assess the method. The eyes, cheeks, nose, lips, and forehead provide the foundation of this function. AlexNet achieves a 98% accuracy rate across its lifespan of system results.
Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreThis article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age conc
... Show MoreBackground: Placenta is a chief cause of maternal and perinatal mortality and significant factor in fetal growth retardation. It undergoes different variations in weight, volume, structure, shape and function continuously throughout the gestation tosupport the prenatal life. Cautious examination of placenta can give information which can be useful in the management of complications in mother and the newborn. Objective: The present work has been attempted towards determination of the morphological ( macroscopic and microscopic) parameters of human full-term placentae and their relation with different parity and age group of mothers. Patients and Methods: A whole of 40 placentae were recently collected.They were divided into four groups
... Show MoreA pseudo-slug flow is a type of intermittent flow characterized by short, frothy, chaotic slugs that have a structure velocity lower than the mixture velocity and are not fully formed. It is essential to accurately estimate the transition from conventional slug (SL) flow to pseudo-slug (PSL) flow, and from SL to churn (CH), by precisely predicting the pressure losses. Recent research has showed that PSL and CH flows comprise a significant portion of the conventional flow pattern maps. This is particularly true in wellbores and pipelines with highly deviated large-diameter gas-condensate wellbores and pipelines. Several theoretical and experimental works studied the behavior of PSL and CH flows; however, few models have been suggested to pre
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
This paper aims to examine the effects of the gender differences on learners‟ motivation in learning the four skills of English as a foreign language as well as to identify the proper types of motivation for males and females via a qualitative semi-structured interview. The findings showed that all the males have extrinsic motivation in all four skills. On the other hand, females differ among themselves in their motivation. In conclusion, it is also the teachers‟ responsibility to guide and direct their learners to achieve better outcomes in learning the four EFL skills.
This study aims at discussing how gender differences might affect communication among people. For this purpose, several TV interviews are selected and examined on the discourse level. Developing a model of analysis ,is found that certain linguistics have been used by male speakers ,whereas different aspects have been utilized my female speakers like deictic expressions and lexical items of emotion and delicacy .
Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show MoreThe breakfast key components of good nutrition and a large proportion of pupils to Ataatnol her breakfast at home and increase the failure rate breakfast increase the child's age research aims to study the importance of breakfast and emphasize the need to contain aggregates of basic food and its relationship to the curriculum daily diet and its impact on the balance of proteins, fats in food daily as well as the effect of some relevant factors such as the mother's level of education and the number of family members and summarized the most important results in that the percentage of 15.6% Neglected children eating breakfast as well as afternoon that Almaah percentages of calories coming from protein and fat at breakfast .....