Preferred Language
Articles
/
pBiBkZgBVTCNdQwCmL-k
Neural Network Model for Synthesis of Thermally Sprayed (AI/AI<sub>2</sub>O<sub>3</sub>) Composite Protective Coatings
...Show More Authors
Abstract<p>Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result was achieved using neural network fitting tool. The network was designed using five neurons in the hidden layer and the input was I input with two layers, the electrical potential and alumina concentration.</p>
Scopus Crossref
View Publication
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Maced J Med Sci.
Past Myocardial Infarctions and Gender Predict the LVEF Regardless of the Status of Coronary Collaterals: An AI-Informed Research. Open Access Maced …
...Show More Authors

BACKGROUND: The degree of the development of coronary collaterals is long considered an alternate–that is, a collateral–source of blood supply to an area of the myocardium threatened with vascular ischemia or insufficiency. Hence, the coronary collaterals are beneficial but can also promote harmful (adverse) effects. For instance, the coronary steal effect during the myocardial hyperemia phase and that of restenosis following coronary angioplasty.

Publication Date
Wed Jan 01 2025
Journal Name
Lecture Notes In Networks And Systems
The Impact of AI-Based Pronunciation and Dialogue Apps on English Language Acquisition: A Comparative Phonetic Study of ELSA Speak and Mondly
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials &amp; Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (12)
Scopus Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Global Pharma Technology
Synthesis, Characterization and Investigation Liquid Crystalline, Properties of 1, 2, 3-triazole Derivatives via Cycloaddition Reaction
...Show More Authors

The new of compounds synthesized by sequence reactions starting from a reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride to produce the compounds [I]a,b, then the compounds[I]a,b reacted with sodium azide to yield compounds[II]a,b that reacted 1,3-dipolarcycloaddition reaction with acrylic acid to give compounds [III]a,b these compounds reacted with methanol led to ester compounds[IV]a,b then reacted with hydrazine to give acid hydrazide [V]a,b . Finally compounds [V]a,b reacted with aromatic aldehydes to product shiff bases derivatives. The compounds characterized by mp. , IR, 1HNMR in addition to mass spectroscopy for some of them the liquid crystals properties were studied by using polarized optical microsco

... Show More
Scopus (2)
Scopus
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FILTRATION MODELING USING ARTIFICIAL NEURAL NETWORK (ANN)
...Show More Authors

In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More