The energy requirements of corn silage harvesters and the application of precision agricultural techniques are essential for efficient and productive agricultural practices. The article aims to review previous studies on the energy requirements needed for different corn silage harvesting machines, and on the other hand, to present methods for measuring corn silage productivity directly in the field and monitoring it based on microcontrollers and artificial intelligence techniques. The process of making corn silage is done by cutting green fodder plants into small pieces, so special harvesters are used for this, called corn silage harvesters. The purpose of harvesting corn silage is to efficiently collect and store as many digestible nutrients as possible per unit of land area. The energy required to harvest corn silage is affected by many factors, including crop moisture, cutting lengths, particle size distribution, etc. This requires understanding the energy requirements of the harvesters used in the process. Using micro-sensors, the feed rate into corn silage harvesters is measured based on load cell data. This method helps in understanding the energy consumption and efficiency of the harvester during the feeding process, leading to more efficient and productive operations. On the other hand, artificial intelligence techniques are used to measure core size and cutting length to control machining parameters. We conclude from this review that precision agriculture techniques help farmers understand the efficiency of corn silage harvesters and know silage yield and quality, which helps them make informed decisions regarding energy use and thus obtain high productivity.
The current study introduces a novel method for calculating the stability time by a new approach based on the conversion of degradation from the conductivity curve results obtained by the conventional method. The stability time calculated by the novel method is shorter than the time measured by the conventional method. The stability time in the novel method can be calculated by the endpoint of the tangency of the conversion curve with the tangent line. This point of tangency represents the stability time, as will be explained in detail. Still, it gives a clear and accurate envisage of the dehydrochlorination behavior and can be generalized to all types of polyvinyl chloride compared to the stability time measured by conventional ones based
... Show MoreCollapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MorePsidium guajava, belonging to the Myrtaceae family, thrives in tropical and subtropical regions worldwide. This important tropical fruit finds widespread cultivation in countries like India, Indonesia, Syria, Pakistan, Bangladesh, and South America. Throughout its various parts, including fruits, leaves, and barks, guava boasts a rich reservoir of bioactive compounds that have been traditionally utilized as folkloric herbal medicines, offering numerous therapeutic applications. Within guava, an extensive array of Various compounds with antioxidative properties and phytochemical constituents are present, including essential oils, polysaccharides, minerals, vitamins, enzymes, triterpenoids, alkaloids, steroids, glycosides, tannins, fl
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
Alizarin is one of the popularly used and wide separated compounds with a chemical name (1,2- dihydroxy-9,10-anthraquinone) which belong to the anthraquinones family that contain three aromatic conjugated rings and in the central rings it contains two ketonic groups.1
In this paper, we investigate the basic characteristics of "magnetron sputtering plasma" using the target V2O5. The "magnetron sputtering plasma" is produced using "radio frequency (RF)" power supply and Argon gas. The intensity of the light emission from atoms and radicals in the plasma measured by using "optical emission spectrophotometer", and the appeared peaks in all patterns match the standard lines from NIST database and employed are to estimate the plasma parameters, of computes electron temperature and the electrons density. The characteristics of V2O5 sputtering plasma at multiple discharge provisos are studied at the "radio frequency" (RF) power ranging from 75 - 150 Wat
... Show MoreRe-use of the byproduct wastes resulting from different municipal and industrial activities in the reclamation of contaminated water is real application for green projects and sustainability concepts. In this direction, the synthesis of composite sorbent from the mixing of waterworks and sewage sludge coated with new nanoparticles named “siderite” (WSSS) is the novelty of this study. These particles can be precipitated from the iron(II) nitrate using waterworks sludge as alkaline agent and source of carbonate. Characterization tests using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping revealed that the coating process was c