In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThis paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreA random laser is a non-conventional laser whose feedback mechanism is based on dissorder-induced light. However, random lasers occur in gain media with numerous scatterers and produce coherent laser emission without any predesigned cavity. The generation of coherent emission from multiple scattering is quite general and its basic principles are shown here using sulforhodamine B-TiO suspensions system. These suspensions were pumped with 337.1 nm pulses from N2 laser and the spectral and temporal behavior of light emitted from the pumped surface was recorded. When we pump power above a certain threshold a dramatic narrowing of the emission line width and a shortening of the emitted pulses were observed. We have experimentally found that i
... Show MoreThis paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
The aim of this work is to produce samples from Iraqi raw materials like Husyniat Bauxite (raw and burnt) and to study the effect of some additives like white Doekhla kaolin clays and alumina on that material properties were using sodium silica as a binding material. Five mixtures were prepared from Bauxite (raw and burnt) and kaolin clays, with an additive of (40) ml from sodium silica and alumina of (2.5, 5, 7.5,10 wt %) percentage as a binding material. the size grading was through sieving. The formation of all specimens was conducted by a measured gradually semi-dry pressing method under a compression force of (10) Tons and humidity ratio ranging from (5-10) % from mixture weight. Drying all specimens was done and then they were burn
... Show MoreIn light of increasing demand for energy consumption due to life complexity and its requirements, which reflected on architecture in type and size, Environmental challenges have emerged in the need to reduce emissions and power consumption within the construction sector. Which urged designers to improve the environmental performance of buildings by adopting new design approaches, Invest digital technology to facilitate design decision-making, in short time, effort and cost. Which doesn’t stop at the limits of acceptable efficiency, but extends to the level of (the highest performance), which doesn’t provide by traditional approaches that adopted by researchers and local institutions in their studies and architectural practices, limit
... Show MoreMetal corrosion is a destructive process for many industrial operations, including oil well acidizing and acid pickling. Therefore, numerous efforts made by many researchers to control the steel corrosion. In the present work, A (E)-4-(((4-(5-mercapto-1,3,4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol (MOPM) has been synthesized and characterized as a new corrosion inhibitor for mild steel in 0.1 M hydrochloric acid. FTIR and 1 HNMR were used in the diagnosis of MOPM, while electrochemical polarization technique was employed to test the performance of inhibitor at various temperatures and inhibitor concentrations. Electrochemical studies showed that MOPM acts as a mixed-type inhibitor with a maximum inhibition efficiency of
... Show More