In this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, thebi-orthogonal wavelet transform is applied on the produced Bezier residue component. The resulting transform coefficients are quantized using progressive scalar quantization and the 1 st order polynomial is applied on the quantized LL subband to produce the polynomial surface, then the produced polynomial surface is subtracted from the LL subband to get the residue component (high frequency component). Then, the quantized values are represented using quad tree encoding to prune the sparse blocks, followed by high order shift coding algorithm to handle the remaining statistical redundancy and to attain efficient compression performance. The conducted tests indicated that the introduced system leads to promising compression gain.
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
A New Spectrophotometric Methods are improved for determination Metronidazole (MTZ) and Metronidazolebenzoate (MTZB) depending on1STand 2nd derivative spectrum of the two drugs by using ethanol as a solvent. Many techniques were proportionated with concentration (peak high to base line, peak to peak and peak area). The linearity of the methodsranged between(1-25µg.ml-1) is obtained. The results were precise and accurate throw RSD% were between (0.041-0.751%) and (0.0331-0.452%), Rec% values between (97.78, 101.87%) and (98.033-102.39%) while the LOD between (0.051-0.231 µg.ml-1) and (0.074-1.04 µg.ml-1) and LOQ between (0.170-0.770µg.ml-1) and (0.074-0.313 µg.ml-1) of (MTZ) and of (MTZB) respectively. These Methods were successfully ap
... Show Morein this paper sufficient conditions of oscillation of all of nonlinear second order neutral differential eqiation and sifficient conditions for nonoscillatory soloitions to onverage to zero are obtained
Ketoprofen is a non-steroidal anti-inflammatory (NSAID) drug with analgesic, anti-inflammatory, and antipyretic effects. It is widely used in the treatment of inflammation and pain associated with rheumatic disorders such as rheumatoid arthritis, osteoarthritis, and in soft tissue injury. The purpose of this study was to prepare an oral disintegrating tablets of ketoprofen by simple method. The tablets were prepared by direct compression method and different ratios of various subliming agents or superdisintegrants were incorporated. Then these tablets were evaluated for hardness, friability, weight variation, water absorption ratio, disintegrating time and dissolution time. The results showed that Formula F11 batch had short disint
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.