Combining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported, as the initial concentration of each metal decreased from approximately 50 ppm to 1.19 for nickel, 3.06 for zinc, and less than 1 ppm for copper. In contrast, ultrasonication did not show any improvement in the treatment process. The extended Langmuir isotherm model convincingly described the experimental data; the Temkin and Dubinin-Radushkevich isotherm models have proven that the removal processes were physical and exothermic. Finally, the pseudo-second-order kinetics model appropriately explained the kinetics of the process with correlation coefficients of 0.9337 and 0.9016, respectively.
Binary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MoreThe effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-or
... Show MoreMany of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Field experiment was conducted during 2007 in the experimental field of crop science Department/ Collage of Agriculture/ University of Baghdad, in order to identify the mechanism of compensation of cotton plant of Lashata Variety, with different levels of fruiting form removal in various time intervals and the effect of this factor on yield component. We use complete randomized block design with three replications. To compare the treatments: (control), 50% bud removal for one, two and three successive weeks, and 100% bud removal for one, two and three successive weeks, 50% flower removal for one, two and three successive weeks and 100% flower removal for one, two and three successive weeks, 50% boll removal for one, two and three successive
... Show MoreMolar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equa
... Show MoreSixty four local isolated of Klebsiella spp. have been isolated from environment samples (soil and water). These isolates were identified and diagnosis according to phenotype and biochemical tests. These isolates were subjected to primary and secondary screening, to select the isolate with the highest laccase activity. Fifteen isolates chosen from primary screening for screening their enzyme activity in secondary screening. It has been found the Klebsiella(K7) has the highest productivity of the enzyme (12 Unit/ml).Klebsiella(K7) isolate was diagnosis by Vitak 2 system, it was identified asK. pneumonia. The laccase purified was characterization, the experiments showed that: The molecular weight of laccase was 120KD and the optimum pH for th
... Show MoreThis investigation deals with the use of orange peel (OP) waste as adsorbent for removal of nitrate (NO3) from simulated wastewater. Orange peel prepared in two conditions dried at 60C° (OPD) and burning at 500 °C (OPB). The effect of pH: 2-10, contact time: 30- 180 min, sorbent weight: 0.5- 3.0 g were considered. The optimal pH value for NO3 adsorption was found to be 2.0 for both adsorbents. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models. Freundlich model was found to fit the equilibrium data very well with high-correlation coefficient (R2). The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R2
... Show More