New evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanoparticles. For conformations, various techniques were used to explore the characterization of Au NPs, included UV–Vis spectroscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM),). UV–vis spectroscopy showed a maximum absorption peak located between 520 and 530 nm. The peaks of XRD 2θ are observed at 38.8°, 44.47°, 64.4° and 77.17°. They correspond to the 111, 200, 220 and 311 crystalline levels respectively. The peak intensity (111) at 38.8° diffraction was maximum peak. the image of FESEM showed that the Au NPs which produced are irregularly shaped spheres with sizes ranging between 41-46 nm. The effect of nanoparticles on REF normal cell lines was studied to calculate cytotoxicity and the greatest rate of destruction of REF normal cell lines was 22.667% after incubation time 72 hour after exposure to the combination of irradiated gold nanoparticles-cisplatin with 50 Gray photon X-ray and 1 µg of cisplatin and the minimum was 0.7% after incubation time 24 hour after exposure to the combination of irradiated gold nanoparticles-cisplatin with 0.5 Gray photon x-ray and 0.025 µg of cisplatin. Its possible to enhance chemotherapy treatment by these nanoparticles, In the future these techniques will be possible to use for kill cancer cells, especially after showed low toxicity on normal cells.
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
The research include a pulsed Nd: YAG Laser with (300µs) pulse duration in the TEM00 mode at (1.06µm) wavelength for energies between (0.5-3) J was employed to drill Brass material which is use in industrial applications. The process of drill was assisted by an electric field. This resulted in an increase in the hole aspect ratio by the value (45%) and decrease in the hole taper by the value (25%) of its value under ordinary drilling conditions using the same input energy.
The photocatalyst process is considered the most promising method for the removal of water contamination. For excellent chemical and structural properties of Co3O4 nanoparticles, various Co3O4-based nanostructures can be applied as a photocatalyst. In this work, carbon quantum dots is prepared via an eco-friendly process and linked to Co3O4 effectively. X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The photocatalyst process reveals that prepared nanocomposites can be degraded methylene blue under solar irradiation strongly. Results showed that methylene blue and methyl orange are degraded via
... Show Morehas experienced a step-change since the inception of ambient mass spectrometry removed the requirement for samples to be investigated under vacuum conditions. Approaches based on surface– plasma interactions are especially promising, including PADI. Whilst the mechanisms involved in generating PADI spectra still need to be unravelled, PADI shows significant promise to become a valuable and versatile tool in the instrumental arsenal available to the surface analyst
Nano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreStaphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffra
... Show MoreBackground: Moringa peregrina Forssk is a well-known plant in ethnomedicine due to its widespread uses in various diseases like cough, wound healing, rhinitis, fever, and detoxification. The plant seeds contain compounds that are cytotoxic to many cancer cells. During the therapeutic use of plants via the oral route, some compounds present in the plants may be cytotoxic to normal cell lines and red blood cells. Objective: This study was the first report of investigation of the cytotoxic profile on oral cancer, CAL 27, cell line, and hemolytic activities on human erythrocytes of Moringa peregrina seeds ethanolic extract (MPSE). Methods: MPSE was screened for its cytotoxic effect against oral cancer, CAL 27, cell line using 3-(4, 5-di
... Show More