Oral carcinoma is the 6th most common cancer in the world. MicroRNAs are small non-coding single stranded RNAs. They have been shown to be capable of altering mRNA expression; thus some are oncogenic or tumor suppressive in nature. The salivary microRNA-31 has been proposed as a sensitive marker for oral malignancy since it was abundant in saliva more than in plasma. A total of 55 whole saliva samples were collected from 35 cases diagnosed with OC their ages and gender matched with 20 healthy subjects. TaqManq RT-PCR was performed for RNA samples. Mean age was 52.23+13.73 years in cases (range:17-70 years) with male predominance represented 69%. Risk of smoking and alcoholism was highly significant. The median fold change of miR-31 was sign
... Show MoreBackground: The presence of cancer has a profound psychological impact on the quality of life of patients and their families, on family and social relationships, and on role functioning.
Aim of the study: Assess the impact of childhood cancer on patients and their families.
Subjects and methods: A Prospective questionnaire-based study, for 151 patients, had malignancy identified by tumor registry of Children Welfare Teaching Hospital. The information was taken from the parent(s) in the presence of the patient who sometimes answered some questions during the interview.
Result: There was an interview with 151 families of children with cancer in t
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreChemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients’ bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and hypotheses subject to parametric uncertainties and exo
... Show MoreRapid development has achieved in treating tumor to stop malignant cell growth and metastasis in the past decade. Numerous researches have emerged to increase potency and efficacy with novel methods for drug delivery. The main objective of this literature review was to illustrate the impact of current new targeting methods to other previous delivering systems to select the most appropriate method in cancer therapy. This review first gave a brief summary of cancer structure and highlighted the main roles of targeting systems. Different types of delivering systems have been addressed in this literature review with focusing on the latest carrier derived from malarial protein. The remarkable advantages and main limitations of the later
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
This study focused on extracting the outer membrane nanovesicles (OMVs) from Escherichia coli BE2 (EC- OMVs) by ultracentrifugation, and the yield was 2.3mg/ml. This was followed by purification with gel filtration chromatography using Sephadex G-150, which was 2mg/ml. The morphology and size of purified EC-OMVs were confirmed by transmission electron microscopy (TEM) at 40-200 nm. The nature of functional groups in the vesicle vesicle was determined by Fourier transforms infrared spectroscopy (FT-IR) analysis. The antitumor activity of EC-OMVs was conducted in vitro by MTT assay in human ovarian (OV33) cancer cell line at 24,48 and 96hrs. The cytotoxicity test showed high susceptibility to the vesicles in ovarian compared to normal
... Show MoreLetrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.