This study was conducted at the poultry farm located in the College of Agricultural Engineering Sciences, University of Baghdad, Abu Gharib (the old site), and laboratories of the Animal Production Department, Jadriya, to investigate the effect of adding hydrogen peroxide H2O2 at nanoscale levels to semen diluents of local roosters sperm in a number of semen characteristics. In this study, 80 roosters local Iraqi chickens were used, the roosters were trained three times a week, to collect semen, until the largest number of them responded. Then the best 40 of the roosters were elected for the purpose of collecting the semen with a pooled sample, and then the samples were diluted and divided equally into four parts. The concentrations of 0, 1, 10, 100, nM of H2O2 were added to each part of the diluted semen, then kept cool until the temperature reached 5 C for three periods (0, 24, 48 hours), and cryopreservation (48 hours) for all four addition levels. A number of laboratory characteristics were studied including percentages of individual motility, dead sperm, mitochondrial efficacy, and DNA Fragmentation at the end of each repetition (10 repetitions). A variation based on the concentration was observed in the results of hydrogen peroxide, as it ranged from the non-affectivity of the two treatments 1, 10 nM H2O2, to the deterioration in some laboratory characteristics for the treatment of 100 nM H2O2, and according to the interactions between the addition concentrations and the cooling and cryopreservation periods. From this experiment, it can be concluded the inefficiency of the hydrogen peroxide concentrations used to semen preservation.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreCarbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Nowadays, the use of natural bio-products in pharmaceuticals is gaining popularity as safe alternatives to chemicals and synthetic drugs. Algal products are offering a pure, healthy and sustainable choice for pharmaceutical applications. Algae are photosynthetic microorganisms that can survive in different environmental conditions. Algae have many outstanding properties that make them excellent candidate for use in therapeutics. Algae grow in fresh and marine waters and produce in their cells a wide range of biologically active chemical compounds. These bioactive compounds are offering a great source of highly economic bio-products. The prese
... Show More