MRSA is one of the major pathogens in hospitals and the community, which have the ability to produce biofilm as a virulence factor, the impact of chalcone on biofilm formation, the synergism effect of chalcone and antibiotic in both in vitro and in vivo experiments, the gene expression of virulence genes (srtA, fnbA, fnbB) before and after treatment of it on MRSA biofilm cells in vitro, all these were the prime aims of this study. Chalcone at MBIC (20 μg/ml), significantly reduced the biofilm formation to 21.45% and at sub MBIC (15 μg/ml) to 36.58 %. While, Chalcone at MIC(5 μg/ml) reduced MRSA planktonic cells to 49.61%. Susceptibility of MRSA isolates against eight antibiotics showed that all isolates were sensitive to vancomycin and none of the isolates developed susceptibility to erythromycin. The combinatorial effect of chalcone at 5 μg/ml and vancomycin at MIC of (1 μg/ml) on MRSA planktonic cells was reduced it from 70 to 23.3% , and in combination with erythromycin at 32 μg/ml, was decreased from 53.1% to 22% and the effect of chalcone at sub MBIC (15 μg/ml) when combined with vancomycin was reducing the biofilm formation from 87% to 27.6 and with erythromycin from 55.1% to 23.8%. Combinatorial phenotypic effect of the antibiotics and chalcone (at sub MBIC), in vitro came in line with the result of in vivo experiment and the results showed decrease in the expression of fnbA, fnbB and srtA genes in tested isolates in the presence of chalcone at sub MBIC. In our study, we demonstrated that chalcone exhibited significant effect in biofilm formation of MRSA strains, which can be considered as promising antimicrobial agents that can be used for prevention of MRSA adherence or as adjunct to antibiotics in conventional therapy.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreCommercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show MoreThis study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreThe present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%). After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL
... Show MoreThe present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO2/air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l-1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l-1 in the unsparged bioreactor. They showed also that aerated bioreactor with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for cultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the biorea
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show More