MRSA is one of the major pathogens in hospitals and the community, which have the ability to produce biofilm as a virulence factor, the impact of chalcone on biofilm formation, the synergism effect of chalcone and antibiotic in both in vitro and in vivo experiments, the gene expression of virulence genes (srtA, fnbA, fnbB) before and after treatment of it on MRSA biofilm cells in vitro, all these were the prime aims of this study. Chalcone at MBIC (20 μg/ml), significantly reduced the biofilm formation to 21.45% and at sub MBIC (15 μg/ml) to 36.58 %. While, Chalcone at MIC(5 μg/ml) reduced MRSA planktonic cells to 49.61%. Susceptibility of MRSA isolates against eight antibiotics showed that all isolates were sensitive to vancomycin and none of the isolates developed susceptibility to erythromycin. The combinatorial effect of chalcone at 5 μg/ml and vancomycin at MIC of (1 μg/ml) on MRSA planktonic cells was reduced it from 70 to 23.3% , and in combination with erythromycin at 32 μg/ml, was decreased from 53.1% to 22% and the effect of chalcone at sub MBIC (15 μg/ml) when combined with vancomycin was reducing the biofilm formation from 87% to 27.6 and with erythromycin from 55.1% to 23.8%. Combinatorial phenotypic effect of the antibiotics and chalcone (at sub MBIC), in vitro came in line with the result of in vivo experiment and the results showed decrease in the expression of fnbA, fnbB and srtA genes in tested isolates in the presence of chalcone at sub MBIC. In our study, we demonstrated that chalcone exhibited significant effect in biofilm formation of MRSA strains, which can be considered as promising antimicrobial agents that can be used for prevention of MRSA adherence or as adjunct to antibiotics in conventional therapy.
Fourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreFiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and
Incorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MorePultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show MoreIn this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi
... Show MoreThis study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show More