In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decades.
The unstable and uncertain nature of natural rubber prices makes them highly volatile and prone to outliers, which can have a significant impact on both modeling and forecasting. To tackle this issue, the author recommends a hybrid model that combines the autoregressive (AR) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. The model utilizes the Huber weighting function to ensure the forecast value of rubber prices remains sustainable even in the presence of outliers. The study aims to develop a sustainable model and forecast daily prices for a 12-day period by analyzing 2683 daily price data from Standard Malaysian Rubber Grade 20 (SMR 20) in Malaysia. The analysis incorporates two dispersion measurements (I
... Show MoreIn this research work an attempt has been made to investigate about the Robustness of the Bayesian Information criterion to estimate the order of the autoregressive process when the error of this model, Submits to a specific distributions and different cases of the time series on various size of samples by using the simulation, This criterion has been studied by depending on ten distributions, they are (Normal, log-Normal, continues uniform, Gamma , Exponential, Gamble, Cauchy, Poisson, Binomial, Discrete uniform) distributions, and then it has been reached to many collection and recommendations related to this object , when the series residual variable is subject to each ( Poisson , Binomial , Exponential , Dis
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
The parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
This paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show More<span lang="EN-GB">This paper highlights the barriers that have led to a delay in the implementation of E-Health services in Iraq. A new framework is proposed to improve the E-Health sector using a SECI model which describes how explicit and tacit knowledge is generated, transferred, and recreated in organizations through main stages (socialization, externalization, combination and internalization). Class association rules (CARs) is integrated to mine the SECI model by extracting related rules which correspond to the medical advice. The proposed framework (SECICAR) can be done through a web portal to assemble healthcare professionals, patients in one environment. SECICAR will be applied to the hypertension community to show th
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
A mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described
... Show MoreIn this research, we discussed and analyzed the relationship between oil prices and the U.S. dollar exchange rate in Iraq. The study adopted the descriptive analysis and econometrics analysis. The descriptive analysis refers to the rise (fall) in crude oil price lead to appreciate (depreciate) in the Iraqi dinar exchange rate, though the channel of the international reserves. The econometrics analysis is based on monthly data covered the period (December/2002 – December/2011), the unit root test, co-integration test, vector error correction model, and Granger causality test have been adopted in this research to check the existence and direction of this relationship. The results refer to the lon
... Show More