This study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal measurements reflect the fact that all the polymers prepared in this study possess thermal stability, and the most thermally stable are the polymers that contain more phenyl rings. The inhibitory feature of the prepared polymers is studied through many tests, which include measuring the erosion rate through methods known as weight loss and scanning electron microscopy tests. In the weight loss method, the inhibiter gives good efficiency in protecting aluminium metal, to reach the inhibition efficiency to 83% using polymer P5 inhibitor with concentration of 0.15 in 0.1 M solution of NaOH. On the other hand, P4 it showed the lowest inhibition efficiency of 16.74% at a concentration of 0.05. Scanning electron microscopy (SEM) images showed that a high corrosion inhibition efficiency of the polymers in NaOH solution (0.1 M), while the metal surface under the corrosion containing the inhibitors showed lower corrosion than that which could be found on the same metal surface, that is located in a completely empty media of the barrier and also clearly showed the protective layer on the surface. Viscosity testing in dimethylsulfoxide solvent showed that the true viscosity increases three fold when the concentration increases from 0.1 to 0.7. The results also showed that copolymer P7 has a higher viscosity.
Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreA series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show MoreIn this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MorePorous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Abstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Hydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreA field experiment was conducted in an agricultural field in Al-Hindia district, Karbala governorate in a silty clay soil during the year 2020. The research included a study of two factors, the first is the depth of plowing at two levels, namely 13 and 20 cm, which represented the main blocks. The second is the tire inflation pressure at two levels, namely (70 and 140 kPa), which represented the secondary blocks. Slippage percentage, field efficiency, leaf area, and 300 grain weight were studied. The experiment was carried out using a split-plot system under a Randomized complete block design, at three replications. The tillage depth of 13 cm exceeds/transcend by giving it the least slippage of (11.01%), the highest field efficiency of (50.
... Show More