Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
In this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
Polymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect
... Show MoreSpray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreThe solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentratio
... Show Moreسمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010