Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files that are read and then processed by removing empty data and unifying the width of the signal at a length of 250 in order to remove noise accurately, and then performing the process of identifying the QRS in the first place and P-T implicitly, and then the task stage is determining the required peak and making a cut based on it. The U-Net pre-trained model is used for deep learning. It takes an ECG signal with a customisable sampling rate as input and generates a list of the beginning and ending points of P and T waves, as well as QRS complexes, as output. The distinguishing features of our segmentation method are its high speed, minimal parameter requirements, and strong generalization capabilities, which are used to create data that can be used in diagnosing diseases or biometric systems.
A Multiple System Biometric System Based on ECG Data
Background: Leishmaniasis is important public
health problem owing to its impact on morbidity
and mortality and difficulties in application of
effective control measures.
Objective: The aim of the study is to evaluate the
using of impregnate bed nets in the control of
leishmaniasis.
Methods: The study was conducted throughout
the years 2004 and 2005, in Diala Governorate
(about 60km north-east Baghdad). This is the first
study in Iraq for evaluation of the impregnated bed
net in control of leishmaniasis. Two villages were
selected to achieve this aim. The nets were
distributed for the first village to be used by their
population. The second village was served as
control.
Results: The
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f