This paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control input.
The topic of context is one of the important topics, which was mentioned as a concept in several fields and different fields, and there were many points of view that defined that concept.
He specified the title of the research (design contexts in the design of the interior space), as the research sought to identify the concept of context in the interior design of the spaces of sewing workshops. The research was divided into four chapters:
The first chapter, which consists of the methodological framework, the problem of research and the need for it, the importance of research, the goal and limits of research for sewing workshops for vocational schools from (2020-2021).
The second chapter: consists of previous studies and the theo
The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show MoreThe application of low order panel method with the Dirichlet boundary condition on complex aircraft configuration have been studied in high subsonic and transonic speeds. Low order panel method has been used to solve the case of the steady, inviscid and compressible flow on a forward swept wing – canard configuration with cylindrical fuselage and a vertical stabilizer with symmetrical cross section. The aerodynamic coefficients for the forward swept wing aircraft were calculated using measured wake shape from an experimental work on same model configuration. The study showed that the application of low order panel method can be used with acceptable results
Sewer network is one of the important utilities in modern cities which discharge the sewage from all facilities. The increase of population numbers consequently leads to the increase in water consumption; hence waste water generation. Sewer networks work is very expensive and need to be designed accurately. Thus construction effective sewer network system with minimum cost is very necessary to handle waste water generation.
In this study trunk mains networks design was applied which connect the pump stations together by underground pipes for too long distances. They usually have large diameters with varying depths which consequently need excavations and gathering from pump stations and transport the sewage
... Show MoreThis paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
Dates are considered one of the most important foods consumed in Arab countries. Dates are commonly infested with the sawtoothed grain beetle, Oryzaephilus surinamensis. Consequently, the date yield, quantity, and quality (economic value and seed viability) are negatively affected. This study was designed to investigate the effectiveness of air evacuation as eco-friendly and safe control method against adult O. surinamensis. Insects were obtained from the infested date purchased from a private store in sakaka city, Aljouf region, Saudi Arabia. Air evacuation (using a vacuum pump) and food deprivation were applied to O. surinamensis, and insect mortality was observed daily in comparison with the control group (a
... Show MoreA new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.