A water crisis is a circumstance in which a region accessible potable, unpolluted water is less than the requirement of that country. Two converging trends cause water scarcity, that are expanded use of irrigation, and loss of available freshwater supplies. Water scarcity can arise from two mechanisms, the physical water scarcity because of deficient natural water supply to fulfil the country demand, and economic water scarcity due to bad management for sufficient available water resources. This research examines data set as multispectral Landsat 8 satellite images that are detected for Basrah city, located in southern Iraq, and positioned between Kuwait and Iran on the Shatt al-Arab. Such raw data are satellite images. Using ENVI 5.3 software, they are handled and analyzed. The raster analyses are carried out using ArcGIS, where water characteristics are sorted. The outcomes are calculated and the water in the city is determined. This study reveals water scarcity and estimates it. While, the real estimation of water is highly expensive in comparison of human and machinery with regard to existing ones. For the future, in order to compare the proposed results of this study with the actual ones observed, it is planned to conduct underground water estimation of the area.
The study aims mainly to evaluate the performance of Sharq Dijila water treatment plant in removing turbidity for the period of 1-4-2001 to 31-3-2004. Daily data for turbidity of raw, clarified, filtered, and supplied water were analyzed. The results of the study showed that there is a wide variation in turbidity levels of raw water fluctuating between 10-1000 NTU with mean value of 41.3 NTU. Turbidity values of the clarified water varied between 1.4-77 NTU. Based on the turbidity value of 10 NTU and 20 NTU (the design maximum turbidity) the readings gave an acceptable percentage of 32.4% and 86% respectively. The turbidity of filtered water ranged between 0.2-4.5 NTU which are completely in compliance with Iraqi and WHO standards. In ac
... Show MorePolymers have the ability to extract water after they have been added to the mortar or concrete mixture. They provide the absorbed water during hydration functioning as internal water source. Absorption polymers can absorb up to hundred times of their own weight of pure water.This research deals with the use of water absorption polymer balls in concrete and study the volumetric change of these mixes and compared the results with reference mix (without polymers). Samples were cured both in air and in water for the mixes to compare results which show that samples in air behave for expansion while sample in water acted for shrinkage.
The analysis and efficiency of phenol extraction from the industrial water using different solvents, were investigated. To our knowledge, the experimental information available in the literature for liquid-liquid equilibria of ternary mixtures containing the pair phenol-water is limited. Therefore the purpose of the present investigation is to generate the data for the water-phenol with different solvents to aid the correlation of liquid-liquid equilibria, including phase diagrams, distribution coefficients of phenol, tie-lines data and selectivity of the solvents for the aqueous phenol system.
The ternary equilibrium diagrams and tie-lines
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
Most of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.
The vacancy of natural resources is undoubtedly limited by time. The sustainable development principle recommends modern technology for its protection and renewal. This project conducted analyses on two underground water sources in the north of Algeria (Mechroha Province). Besides, the use of the hardness factor and the adoption of the titration method, which is the determining the concentration of an unknown solution using a known solution concentration, have permitted the characterization of the examples taken and to verify their conformity to the standard required, the results found showed HT=6.66 French degrees (oF) ) for Ain Guilloume water spring in comparison to Ain Messai water spring H
The present work aims to study the possibility of utilization a forward osmosis desalination process as an alternative method to extract water from brine solution rejected from reverse osmosis process.
Experiments conducted in a laboratory–scale forward osmosis (FO) unit in cross flow flat sheet membrane cell yielded water flux ranging from (0.0315 to 0.56 L/m2 .min) when using CTA membrane,and ranging from (0.419 to 2.785 L/m2 .min) for PA membrane under 0.4 bar. Two possible membrane orientations were tested. Sodium chloride with high concentrations was used as draw solution solute. The effect of membrane orientation on internal concentration polarization (ICP) was studied. Two regimes of ICP; dilutive and concentrative were desc
The implementation of nanotechnology in all industries is one of most significant research fields. Nanoparticles have shown a promising application in subsurface fields. On the other hand, various surfactants have been used in the oil industry to reduce oil/water interfacial tension and also widely used to stabilize the nano-suspensions. The primary objective of this study was to investigate the improvements of surfactants ability in term of interfacial tension (γ) reduction utilizing addition of silicon dioxide nanoparticles at different temperatures and salinity. The pendant drop technique has been used to measure γ and electrical conductivity has been used to measure the critical micelle concentration (CMC). The synergistic effects of
... Show More