This work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-doped TiO2/Co3O4 was sensitive to light, that’s due to the photogenerated holes in the valence band of photocatalyst (N-doped TiO2) and led to direct electron transfer from Co3O4 to N-doped TiO2 layer. The optical transmittance modulation ΔT = Tb− Tc was 27.1% after 2.5 h irradiation by xenon light
All the prepared metal complexes of Pt (IV), Au(III), Rh (III), Co (II) and V(IV) with new ligand sodium [5-(p-nitro phenyl)-/4-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide] (TRZ.DTC) have been synthesized and characterized in solid state by using flame atomic absorption, elemental analysis C.H.N.S, FT-IR ,UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of the complexes formed in ethanolic solution has been studied following the molar ratio method also was studied stability constant and found to be stable in molar ratio1:1 of VL (IV) and CoL(II) while Pt(IV), Au(III) and Rh(III) complexes stable in molar ratio 1:2 as well as the molar absorptivity for these complexes were calculated. From the prev
... Show MoreIn the present work polymer electrolytes were formulated using the solvent casting technique. Under special conditions, the electrolyte content was of fixed ratio of polyvinylpyrolidone (PVP): polyacrylonitrile (PAN) (25:75), ethylene carbonate (EC) and propylene carbonate (PC) (1:1) with 10% of potassium iodide (KI) and iodine I2 = 10% by weight of KI. The conductivity was increased with the addition of ZnO nanoparticles. It is also increased with the temperature increase within the range (293 to 343 K). The conductivity reaches maximum value of about (0.0296 S.cm-1) with (0.25 g) ZnO. The results of FTIR for blend electrolytes indicated a significant degree of interaction between the polymer blend (PVP and PAN)
... Show MoreWith the narratives and sayings in the biography of the Prophet and the science of the Koran, Orientalists used this case as a pretext to distort the biography of the Prophet and his character and patience for his call. Researcher in the folds of his research.
Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreThe - M ultiple mixing ratios of -transitions from levels of 56Fe populated in 56 56 Fe n n Fe ( , ) reactions are calculated by using const. S.T.M. This method has been used in other works [3,7] but with pure transition or with transitions that can be considered as pure transitions، in our work we used This method for mixed - transitions in addition to pure - transitions. The experimental angular distribution coefficients a2 was used from previous works [1] in order to calculet - values. It is clear from the results that the - values are in good agreement or consistent, within associated errors, with those reported previously [1]. The discrepancies that occur are due to inaccuracies existing in the expe
... Show MoreIn this work, we construct the projectively distinct (k, n)-arcs in PG (3, 4) over Galois field GF (4), where k 5, and we found that the complete (k, n)-arcs, where 3 n 21, moreover we prove geometrically that the maximum complete (k, n)-arc in PG (3, 4) is (85, 21)-arc. A (k, n)-arcs is a set of k points no n+ 1 of which are collinear. A (k, n)-arcs is complete if it is not contained in a (k+ 1, n)-arcs