Preferred Language
Articles
/
oRf6Po8BVTCNdQwC6WUP
Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms
...Show More Authors

Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is openly accessible. It evaluates the performance of a complete arrangement of machine learning algorithms and network traffic features to indicate the best features for detecting the assured attack classes. Our goal is storing the address of destination IP that is utilized to detect an intruder by method of misuse detection.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 03 2025
Journal Name
Journal Of Animal Health And Production
Prevalence of Toxocara spp. in Cats and Detection of Intestinal Helminth Infections in Humans
...Show More Authors

This study aimed to investigate the prevalence of intestinal helminth infections in humans and detect Toxocara spp. in cats, with a focus on assessing the impact of age and gender on infection rates. Traditional diagnostic methods have historically limited the accurate identification of helminth infections in humans. Analysis of 450 human stool samples revealed an overall helminth infection rate of 5.7% using conventional techniques. The specific infection rates were 0.4% for Strongyloides stercoralis, 0.6% for Schistosoma mansoni, 1.7% for Hymenolepis nana, and 2.8% for Ascaris lumbricoides. Notably, no infections were recorded in the 30–39 and ≥40-year age groups, while the highest infection rate (16.3%, P≤0.01) was observed in indi

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Pharmaceutical Research
New method for the evaluation of propranolol with phosphotungstic acidvialong distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis
...Show More Authors

A new, simple and sensitive method was used forevaluation of propranolol withphosphotungstic acidto prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between propranolol and phosphotungstic acid in an aqueous medium to obtain a yellow precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.007-13 mmol/L for cell A and 5-15 mmol/L for cell B, and LOD 207.4792 ng/160 µL and 1.2449 µg/160 µL respectively to cell A and cell B with correlation coefficient (r) 0.9988 for cell A, 0.9996 for cell B, RSD% was lower than 1%, (n=8) for the

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jul 20 2024
Journal Name
Sumer Journal For Pure Science
Classify the Nutritional Status of Iraqi children under Five Years Using Fuzzy Classification
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Wed May 01 2013
Journal Name
Ieee Journal Of Biomedical And Health Informatics
Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography
...Show More Authors

View Publication
Scopus (303)
Crossref (275)
Scopus Clarivate Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Tem Journal
Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System
...Show More Authors

Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref