Preferred Language
Articles
/
oBe1uI4BVTCNdQwCyFf7
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
...Show More Authors

في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بع

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
...Show More Authors

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Electronics,computer Networking And Applied Mathematics
Comparison of Some Estimator Methods of Regression Mixed Model for the Multilinearity Problem and High – Dimensional Data
...Show More Authors

In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.

View Publication
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimation methods for regression model parametersIn the case of the problem of linear multiplicity and abnormal values
...Show More Authors

 A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Baysian and NonBaysian Methods to Estimate the two parameters of Logistic Distribution
...Show More Authors

In this paper ,the problem of point estimation for the two parameters of logistic distribution has been investigated using simulation technique. The rank sampling set estimator method which is one of the Non_Baysian procedure and Lindley approximation estimator method which is one of the Baysian method were used to estimate the parameters of logistic distribution. Comparing between these two mentioned methods by employing mean square error measure and mean absolute percentage error measure .At last simulation technique used to generate many number of samples sizes to compare between these methods.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use of Logistic Regression Model in Estimating the Probability of Being Affected By Breast Cancer Based On the Levels of Interleukins and Cancer Marker CA15-3
...Show More Authors

Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o

... Show More
View Publication
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
...Show More Authors

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Mining categorical Covid-19 data using chi-square and logistic regression algorithms
...Show More Authors

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref