In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
A comparative study was carried out to evaluate alkaloid antibacterial activity which was extracted from the root bark Punica granatum L. by liquid membrane techniques (SA) and organic solvent traditional techniques (SB). The screening of the antimicrobial activity was conducted by agar well diffusion method against Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis at three concentration levels (5, 10 and 15 mg/ml). Alkaloid extracts were analyzed by a high performance liquid chromatography (HPLC) method. Among the tested extractions, SB showed the highest antibacterial activity against all five bacterial strains, especially at 15 mg/ml concentration. However, all the B type solution
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreGenerally, direct measurement of soil compression index (Cc) is expensive and time-consuming. To save time and effort, indirect methods to obtain Cc may be an inexpensive option. Usually, the indirect methods are based on a correlation between some easier measuring descriptive variables such as liquid limit, soil density, and natural water content. This study used the ANFIS and regression methods to obtain Cc indirectly. To achieve the aim of this investigation, 177 undisturbed samples were collected from the cohesive soil in Sulaymaniyah Governorate in Iraq. Results of this study indicated that ANFIS models over-performed the Regression method in estimating Cc with R2 of 0.66 and 0.48 for both ANFIS and Regre
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show More
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreMultivariate Non-Parametric control charts were used to monitoring the data that generated by using the simulation, whether they are within control limits or not. Since that non-parametric methods do not require any assumptions about the distribution of the data. This research aims to apply the multivariate non-parametric quality control methods, which are Multivariate Wilcoxon Signed-Rank ( ) , kernel principal component analysis (KPCA) and k-nearest neighbor ( −
The extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.
The research has been concerned with the modalities of foreign trade payments (foreign trade financing), and made an accounting comparison between them to choose the best way to pay for the imported goods (payment of the real values of imported goods), given the importance of the impact of this activity on the national economy of all countries of the world, especially Iraq for the adoption of a very large amount of imported goods to meet the requirements of the people, which require the flow of huge amounts of foreign currency outside Iraq to pay for these goods, and therefore dealing incorrectly with it leads to the destruction of the national economy and the spread of a number of negative social and economic phenomena of
... Show More