Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters in correlating the data due to the presence of Calcite, Quartz, and clay in some core samples. Brittleness index (BRI) indicates ductile behavior of the core samples is also studied for the interested reservoir. The results of BRI show that the samplers range from moderate to high brittleness, and the difference in BRI comes from the presence of some minerals, as explained using the X-ray diffraction test (XRD). The proposed correlations are compared to other correlations from literature for validation, and the results of the comparison show good matching that explains the accuracy of the proposed equations.
In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
Rock engineers widely use the uniaxial compressive strength (UCS) of rocks in designing
surface and underground structures. The procedure for measuring this rock strength has been
standardized by both the International Society for Rock Mechanics (ISRM) and American Society
for Testing and Materials (ASTM), Akram and Bakar(2007).
In this paper, an experimental study was performed to correlate of Point Load Index ( Is(50))
and Pulse Wave Velocity (Vp) to the Unconfined Compressive Strength (UCS) of Rocks. The effect
of several parameters was studied. Point load test, Unconfined Compressive Strength (UCS) and
Pulse Wave Velocity (Vp) were used for testing several rock samples with different diameters.
The predicted e
Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
Characterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca
... Show MoreThe paper shows how to estimate the three parameters of the generalized exponential Rayleigh distribution by utilizing the three estimation methods, namely, the moment employing estimation method (MEM), ordinary least squares estimation method (OLSEM), and maximum entropy estimation method (MEEM). The simulation technique is used for all these estimation methods to find the parameters for the generalized exponential Rayleigh distribution. In order to find the best method, we use the mean squares error criterion. Finally, in order to extract the experimental results, one of object oriented programming languages visual basic. net was used
Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo
... Show MoreIn this paper ,the problem of point estimation for the two parameters of logistic distribution has been investigated using simulation technique. The rank sampling set estimator method which is one of the Non_Baysian procedure and Lindley approximation estimator method which is one of the Baysian method were used to estimate the parameters of logistic distribution. Comparing between these two mentioned methods by employing mean square error measure and mean absolute percentage error measure .At last simulation technique used to generate many number of samples sizes to compare between these methods.
In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.