Preferred Language
Articles
/
o4b9noYBIXToZYALnpqx
COMSOL multiphysics 3.5a package for simulating the cadmium transport in the sand bed-bentonite low permeable barrier
...Show More Authors

Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Iron Permeable Reactive Barrier for Removal of Lead from Contaminated Groundwater
...Show More Authors

The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Sep 04 2017
Journal Name
International Journal Of Environmental Science And Technology
A review of permeable reactive barrier as passive sustainable technology for groundwater remediation
...Show More Authors

Scopus (142)
Crossref (130)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Environmental Engineering
Using Granular Dead Anaerobic Sludge as Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Phenol
...Show More Authors

Scopus (21)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Nov 28 2016
Journal Name
Separation Science And Technology
Using sewage sludge as a permeable reactive barrier for remediation of groundwater contaminated with lead and phenol
...Show More Authors

Scopus (24)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Thu Jul 24 2014
Journal Name
Desalination And Water Treatment
Performance of granular dead anaerobic sludge as permeable reactive barrier for containment of lead from contaminated groundwater
...Show More Authors

Scopus (21)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Wed Jun 18 2014
Journal Name
Desalination And Water Treatment
Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier
...Show More Authors

Scopus (22)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Wed Dec 28 2016
Journal Name
Environmental Technology
Remediation of groundwater contaminated with the lead–phenol binary system by granular dead anaerobic sludge-permeable reactive barrier
...Show More Authors

Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Environmental Engineering
Sustainable Use of Concrete Demolition Waste as Reactive Material in Permeable Barrier for Remediation of Groundwater: Batch and Continuous Study
...Show More Authors

Scopus (24)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Desalination And Water Treatment
Numerical modeling of performance of olive seeds as permeable reactive barrier for containment of copper from contaminated groundwater
...Show More Authors

Scopus (19)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Phenol Removal Using Granular Dead Anaerobic Sludge Permeable Reactive Barrier in a Simulated Groundwater Pilot Plant
...Show More Authors

This study investigates the performance of granular dead anaerobic sludge (GDAS) bio-sorbent as permeable reactive barrier in removing phenol from a simulated contaminated shallow groundwater. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in phenol-containing aqueous solutions. The results of GDAS tests proved that the best values of operating parameters, which achieve the maximum removal efficiency of phenol (=85%), at equilibrium contact time (=3 hr), initial pH of the solution (=5), initial phenol concentration (=50 mg/l), GDAS dosage (=0.5 g/100 ml), and agitation speed (=250 rpm). Fourier transform infrared (FTIR) analysis proved that the carboxylic acid, aromatic, alk

... Show More
View Publication Preview PDF
Crossref (8)
Crossref