An essential tool for studying the web is its ability to show how energy moves through an ecosystem. Understanding and elucidating the relationship between species variety and their placement within the inclusive trophic dynamics is also beneficial. A food web ecological model with prey and two rival predators under fear and wind flow conditions is developed in this article. The boundedness and positivity of the system’s solution are established mathematically. The stability and existence constraints of the system’s equilibria are examined. The proposed system’s persistence limitations are established. Additionally, the bifurcation analysis of every potential equilibrium is examined using the Sotomayor theorem. To describe the dynamical behavior of the proposed system, inclusive numerical simulations are performed using MATLAB software (version R2018b). This article aims to recognize the effect of fear and wind flow on the dynamics of this ecosystem. It was found that the high levels of fear caused the decrease of the predators, and the bistable state appeared while rising levels of wind flow caused the extinction of the predators.
This study deals with Aphid predators of the genus Coccinella L. recognized in different
regions of the world. They have been arranged systematically according to Korschefsky’s
catalogue (1931). The list includes sites of study and the reference (works) that consider
Coccinellids as predator. The study has revealed that there are thirteen Aphid predator species
belonging to the genus Coccinella L. in different places of the world, although there might be
other species that were not recorded by this work.
The calibration of a low-speed wind tunnel (LSWT) test section had been made in the present work. The tunnel was designed and constructed at the Aerodynamics Lab. in the Mechanical Engineering Department/University of Baghdad. The test section design speed is 70 m/s. Frictional loses and uniformity of the flow inside the test section had been tested and calibrated based on the British standards for flow inside ducts and conduits. Pitot-static tube, boundary layer Pitot tube were the main instruments which were used in the present work to measure the flow characteristics with emphasize on the velocity uniformity and boundary layer growth along the walls of the test section. It is found that the maximum calibrated velocity for empty test s
... Show MoreThe experiment was conducted in Al- Mahaweel Research Station in Babel Governorate, Ministry of Agriculture during autumn season 2016-2017 to determine the role of irrigation management processes and micronutrient fertilization in growth and productivity of two varieties of wheat IPA 99 and Al-Rasheed 22 in clay loam soil classified as Typic Torriflovent. The experiment included four irrigation treatments and six fertilization treatments. The experiment was designed under randomized complete block design (RCBD) with three replications. Wheat grain IPA 99 and Al-Rasheed 22 varieties were planted in 23/11/2016 and harvested in 13/5/2017. The amount and periods of irrigation depended on sensors reading of volumetric water content was measured
... Show MoreThe mathematical construction of an ecological model with a prey-predator relationship was done. It presumed that the prey consisted of a stage structure of juveniles and adults. While the adult prey species had the power to fight off the predator, the predator, and juvenile prey worked together to hunt them. Additionally, the effect of the harvest was considered on the prey. All the solution’s properties were discussed. All potential equilibrium points' local stability was tested. The prerequisites for persistence were established. Global stability was investigated using Lyapunov methods. It was found that the system underwent a saddle-node bifurcation near the coexistence equilibrium point while exhibiting a transcritical bifurcation
... Show MoreIn this paper, the dynamics of scavenger species predation of both susceptible and infected prey at different rates with prey refuge is mathematically proposed and studied. It is supposed that the disease was spread by direct contact between susceptible prey with infected prey described by Holling type-II infection function. The existence, uniqueness, and boundedness of the solution are investigated. The stability constraints of all equilibrium points are determined. In addition to establishing some sufficient conditions for global stability of them by using suitable Lyapunov functions. Finally, these theoretical results are shown and verified with numerical simulations.
The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
Reproduction potential and age –specific fecundity of the Mealybug Planococcus citri Risso were studied in the laboratories of Biological control research unit,college of Agriculture –Baghdad university at 25± 2Cº and 60-70% R.H.with 16 light:8 dark photo period.The results showed that the survival ratio began to decline at the 38th day, the average female age was 20 days ,while the average age was 8 days at the first reproduction . Net reproduction rate ( Ro ) was 58.59 female female generation which prove that the population of the mealybug was of the unstable kind , intrinsic rate of increase (rm) was 0.118 femalefemale and the average length period of generation ( T ) was 34.30 days . Many local predators attack the mealybug
... Show MoreStart your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.